·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃ£º$\left\{\begin{array}{l}{c=\sqrt{2}}\\{\frac{c}{a}=\frac{\sqrt{6}}{3}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½â³ö¼´¿ÉµÃ³ö£®
£¨2£©ÉèÖ±ÏßABµÄ·½³ÌΪ£ºy=kx£¬A£¨x1£¬y1£©£¬B£¨-x1£¬-y1£©£¬D£¨x2£¬y2£©£®Ö±ÏßABµÄ·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢½âµÃA£¬BµÄ×ø±ê£¬¿ÉµÃÖ±ÏßADµÄ·½³Ì£¬ÓëÍÖÔ²·½³ÌÁªÁ¢¿ÉµÃDµÄ×ø±ê£¬¿ÉµÃÖ±ÏßBDµÄ·½³Ì£¬ÔÙÀûÓÃбÂʼÆË㹫ʽ¼´¿ÉµÃ³ö£®
½â´ð
£¨1£©½â£ºÓÉÌâÒâ¿ÉµÃ£º$\left\{\begin{array}{l}{c=\sqrt{2}}\\{\frac{c}{a}=\frac{\sqrt{6}}{3}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃc=$\sqrt{2}$£¬a=$\sqrt{3}$£¬b=1£®
¡àÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{3}+{y}^{2}$=1£»
£¨2£©Ö¤Ã÷£ºÉèÖ±ÏßABµÄ·½³ÌΪ£ºy=kx£¬A£¨x1£¬y1£©£¬B£¨-x1£¬-y1£©£¬D£¨x2£¬y2£©£®
ÁªÁ¢$\left\{\begin{array}{l}{y=kx}\\{\frac{{x}^{2}}{3}+{y}^{2}=1}\end{array}\right.$£¬½âµÃA$£¨\frac{\sqrt{3}}{\sqrt{1+3{k}^{2}}}£¬\frac{\sqrt{3}k}{\sqrt{1+3{k}^{2}}}£©$£¬B$£¨\frac{-\sqrt{3}}{\sqrt{1+3{k}^{2}}}£¬\frac{-\sqrt{3}k}{\sqrt{1+3{k}^{2}}}£©$£®
¡ßAD¡ÍAB£¬¡àÖ±ÏßADµÄ·½³ÌΪ£ºy-$\frac{\sqrt{3}k}{\sqrt{1+3{k}^{2}}}$=$-\frac{1}{k}$$£¨x-\frac{\sqrt{3}k}{\sqrt{1+3{k}^{2}}}£©$£®
»¯Îªy=-$\frac{1}{k}$x+$\frac{\sqrt{3}£¨1+{k}^{2}£©}{k\sqrt{1+3{k}^{2}}}$£®
´úÈëÍÖÔ²·½³Ì¿ÉµÃ£º$\frac{{x}^{2}}{3}$+$[-\frac{1}{k}x+\frac{\sqrt{3}£¨1+{k}^{2}£©}{k\sqrt{1+3{k}^{2}}}]^{2}$=1£¬
»¯Îª£º$\sqrt{1+3{k}^{2}}£¨{k}^{2}+3£©{x}^{2}$-$6\sqrt{3}$£¨1+k2£©x+$\frac{3£¨5{k}^{2}+3£©}{\sqrt{1+3{k}^{2}}}$=0£®
½âµÃx1=$\frac{\sqrt{3}}{\sqrt{1+3{k}^{2}}}$£¬x2=$\frac{\sqrt{3}£¨5{k}^{2}+3£©}{£¨{k}^{2}+3£©\sqrt{1+3{k}^{2}}}$£¬
y1=$\frac{\sqrt{3}k}{\sqrt{1+3{k}^{2}}}$£®
y2=$\frac{\sqrt{3}k£¨{k}^{2}-1£©}{£¨{k}^{2}+3£©\sqrt{1+3{k}^{2}}}$£®
¡àkBD=$\frac{{y}_{2}+{y}_{1}}{{x}_{2}+{x}_{1}}$=$\frac{k}{3}$=k1£®
BDµÄ·½³ÌΪ£ºy+$\frac{\sqrt{3}k}{\sqrt{1+3{k}^{2}}}$=$\frac{k}{3}$$£¨x+\frac{\sqrt{3}}{\sqrt{1+3{k}^{2}}}£©$£¬
Áîy=0£¬½âµÃxM=$\frac{2\sqrt{3}}{\sqrt{1+3{k}^{2}}}$£¬¡àM$£¨\frac{2\sqrt{3}}{\sqrt{1+3{k}^{2}}}£¬0£©$£®
¡àk2=$\frac{{y}_{1}}{{x}_{1}-{x}_{M}}$=-k£®
¡à3k1=-k2£®
¡à¦Ë=-$\frac{1}{3}$£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌ⡢бÂʼÆË㹫ʽ¡¢Ï໥´¹Ö±µÄбÂÊÖ®¼äµÄ¹ØÏµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | x+4y+4=0 | B£® | x-4y-4=0 | C£® | x-4y+4=0 | D£® | x+4y-4=0 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{53}{3}$¦Ð | B£® | $\frac{55}{3}$¦Ð | C£® | 18¦Ð | D£® | $\frac{76}{3}$¦Ð |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | $\frac{\sqrt{2}}{2}$ | C£® | $\frac{\sqrt{5}}{2}$ | D£® | $\sqrt{5}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 4$\sqrt{3}$¦Ð | B£® | 12¦Ð | C£® | 24¦Ð | D£® | 48¦Ð |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com