9£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÒ»¸ö½¹µãΪF£¨$\sqrt{2}$£¬0£©£¬ÀëÐÄÂÊΪ$\frac{\sqrt{6}}{3}$£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©¹ýÔ­µãµÄÖ±ÏßÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¨A£¬B²»ÊÇÍÖÔ²CµÄ¶¥µã£©£¬µãDÔÚÍÖÔ²CÉÏ£¬ÇÒAD¡ÍAB£¬Ö±ÏßBDÓëxÖá¡¢yÖá·Ö±ð½»ÓÚM¡¢NÁ½µã£¬ÉèÖ±ÏßBD£¬AMµÄбÂÊ·Ö±ðΪk1£¬k2£¬Ö¤Ã÷£º´æÔÚ³£Êý¦ËʹµÃk1=¦Ëk2£¬²¢Çó³ö¦ËµÄÖµ£®

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃ£º$\left\{\begin{array}{l}{c=\sqrt{2}}\\{\frac{c}{a}=\frac{\sqrt{6}}{3}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½â³ö¼´¿ÉµÃ³ö£®
£¨2£©ÉèÖ±ÏßABµÄ·½³ÌΪ£ºy=kx£¬A£¨x1£¬y1£©£¬B£¨-x1£¬-y1£©£¬D£¨x2£¬y2£©£®Ö±ÏßABµÄ·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢½âµÃA£¬BµÄ×ø±ê£¬¿ÉµÃÖ±ÏßADµÄ·½³Ì£¬ÓëÍÖÔ²·½³ÌÁªÁ¢¿ÉµÃDµÄ×ø±ê£¬¿ÉµÃÖ±ÏßBDµÄ·½³Ì£¬ÔÙÀûÓÃбÂʼÆË㹫ʽ¼´¿ÉµÃ³ö£®

½â´ð £¨1£©½â£ºÓÉÌâÒâ¿ÉµÃ£º$\left\{\begin{array}{l}{c=\sqrt{2}}\\{\frac{c}{a}=\frac{\sqrt{6}}{3}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃc=$\sqrt{2}$£¬a=$\sqrt{3}$£¬b=1£®
¡àÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{3}+{y}^{2}$=1£»
£¨2£©Ö¤Ã÷£ºÉèÖ±ÏßABµÄ·½³ÌΪ£ºy=kx£¬A£¨x1£¬y1£©£¬B£¨-x1£¬-y1£©£¬D£¨x2£¬y2£©£®
ÁªÁ¢$\left\{\begin{array}{l}{y=kx}\\{\frac{{x}^{2}}{3}+{y}^{2}=1}\end{array}\right.$£¬½âµÃA$£¨\frac{\sqrt{3}}{\sqrt{1+3{k}^{2}}}£¬\frac{\sqrt{3}k}{\sqrt{1+3{k}^{2}}}£©$£¬B$£¨\frac{-\sqrt{3}}{\sqrt{1+3{k}^{2}}}£¬\frac{-\sqrt{3}k}{\sqrt{1+3{k}^{2}}}£©$£®
¡ßAD¡ÍAB£¬¡àÖ±ÏßADµÄ·½³ÌΪ£ºy-$\frac{\sqrt{3}k}{\sqrt{1+3{k}^{2}}}$=$-\frac{1}{k}$$£¨x-\frac{\sqrt{3}k}{\sqrt{1+3{k}^{2}}}£©$£®
»¯Îªy=-$\frac{1}{k}$x+$\frac{\sqrt{3}£¨1+{k}^{2}£©}{k\sqrt{1+3{k}^{2}}}$£®
´úÈëÍÖÔ²·½³Ì¿ÉµÃ£º$\frac{{x}^{2}}{3}$+$[-\frac{1}{k}x+\frac{\sqrt{3}£¨1+{k}^{2}£©}{k\sqrt{1+3{k}^{2}}}]^{2}$=1£¬
»¯Îª£º$\sqrt{1+3{k}^{2}}£¨{k}^{2}+3£©{x}^{2}$-$6\sqrt{3}$£¨1+k2£©x+$\frac{3£¨5{k}^{2}+3£©}{\sqrt{1+3{k}^{2}}}$=0£®
½âµÃx1=$\frac{\sqrt{3}}{\sqrt{1+3{k}^{2}}}$£¬x2=$\frac{\sqrt{3}£¨5{k}^{2}+3£©}{£¨{k}^{2}+3£©\sqrt{1+3{k}^{2}}}$£¬
y1=$\frac{\sqrt{3}k}{\sqrt{1+3{k}^{2}}}$£®
y2=$\frac{\sqrt{3}k£¨{k}^{2}-1£©}{£¨{k}^{2}+3£©\sqrt{1+3{k}^{2}}}$£®
¡àkBD=$\frac{{y}_{2}+{y}_{1}}{{x}_{2}+{x}_{1}}$=$\frac{k}{3}$=k1£®
BDµÄ·½³ÌΪ£ºy+$\frac{\sqrt{3}k}{\sqrt{1+3{k}^{2}}}$=$\frac{k}{3}$$£¨x+\frac{\sqrt{3}}{\sqrt{1+3{k}^{2}}}£©$£¬
Áîy=0£¬½âµÃxM=$\frac{2\sqrt{3}}{\sqrt{1+3{k}^{2}}}$£¬¡àM$£¨\frac{2\sqrt{3}}{\sqrt{1+3{k}^{2}}}£¬0£©$£®
¡àk2=$\frac{{y}_{1}}{{x}_{1}-{x}_{M}}$=-k£®
¡à3k1=-k2£®
¡à¦Ë=-$\frac{1}{3}$£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌ⡢бÂʼÆË㹫ʽ¡¢Ï໥´¹Ö±µÄбÂÊÖ®¼äµÄ¹ØÏµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èôº¯Êýf£¨x£©µÄ¶¨ÒåÓòÊÇ{x|0£¼x¡Ü1}£¬Çóf£¨cos¦Á£©µÄ¶¨ÒåÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®¹ýÇúÏßy=$\sqrt{x}$Éϵĵ㣨4£¬2£©µÄÇÐÏß·½³ÌÊÇ£¨¡¡¡¡£©
A£®x+4y+4=0B£®x-4y-4=0C£®x-4y+4=0D£®x+4y-4=0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑ֪бÂÊΪ1µÄÖ±Ïßl¹ýÍÖÔ²$\frac{{x}^{2}}{4}$+y2=1µÄÓÒ½¹µãF½»ÍÖÔ²ÓÚA¡¢BÁ½µã£¬
£¨1£©Çó½¹µãFµÄ×ø±ê¼°ÆäÀëÐÄÂÊ 
£¨2£©ÇóÏÒABµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£®$\frac{53}{3}$¦ÐB£®$\frac{55}{3}$¦ÐC£®18¦ÐD£®$\frac{76}{3}$¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬ËıßÐÎABCDÊÇÁâÐΣ¬PD¡ÍÆ½ÃæABCD£¬PD¡ÎBE£¬AD=PD=2BE=2£¬¡ÏDAB=60¡ã£¬µãFΪPAµÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºEF¡ÎÆ½ÃæABCD£»
£¨¢ò£©ÇóÖ¤£ºÆ½ÃæPAE¡ÍÆ½ÃæPAD£»
£¨¢ó£©ÇóÈýÀâ×¶P-ADEµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Ä³¶àÃæÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¶àÃæÌå¸÷ÃæµÄÃæ»ýÖÐ×î´óµÄÊÇ£¨¡¡¡¡£©
A£®1B£®$\frac{\sqrt{2}}{2}$C£®$\frac{\sqrt{5}}{2}$D£®$\sqrt{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÍâ½ÓÇò±íÃæ»ýΪ£¨¡¡¡¡£©
A£®4$\sqrt{3}$¦ÐB£®12¦ÐC£®24¦ÐD£®48¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÍÖÔ²C$£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬µã$£¨\sqrt{3}£¬\frac{1}{2}£©$ÔÚÍÖÔ²CÉÏ£®Ö±Ïßl¹ýµã£¨1£¬1£©£¬ÇÒÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬Ïß¶ÎABµÄÖеãΪM£®
£¨I£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©µãOÎª×ø±êÔ­µã£¬ÑÓ³¤Ïß¶ÎOMÓëÍÖÔ²C½»ÓÚµãP£¬ËıßÐÎOAPBÄÜ·ñΪƽÐÐËıßÐΣ¿ÈôÄÜ£¬Çó³ö´ËʱֱÏßlµÄ·½³Ì£¬Èô²»ÄÜ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸