精英家教网 > 高中数学 > 题目详情
12.若函数f(x)的定义域是{x|0<x≤1},求f(cosα)的定义域.

分析 函数f(x)的定义域是{x|0<x≤1},可得0<cosα≤1,解出即可得出:f(cosα)的定义域.

解答 解:∵函数f(x)的定义域是{x|0<x≤1},
∴0<cosα≤1,
解得$2kπ-\frac{π}{2}$<α<$\frac{π}{2}$+2kπ,k∈Z.
∴f(cosα)的定义域为($2kπ-\frac{π}{2}$,$\frac{π}{2}$+2kπ),k∈Z.

点评 本题考查了函数的定义域、三角函数求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若tanα=3tan37°,则$\frac{cos(α-53°)}{sin(α-37°)}$的值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}的前n项和为Sn,满足Sn=$\frac{2}{3}$an+5,且λan+1≤5Sn-S2n对任意的n∈N*恒成立,则实数λ的取值范围[-3,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系x0y中,动点A的坐标为(2+$\sqrt{2}$cosα,$\sqrt{2}$sinα-1),其中α∈R.在极坐标系(以原点O为极点,以x轴非负半轴为极轴)中,直线C的方程为ρcos(θ-$\frac{π}{4}$)=$\sqrt{2}$a.
(Ⅰ)判断动点A的轨迹的形状;
(Ⅱ)若直线C与动点A的轨迹有且仅有一个公共点,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=1+$\frac{a}{{a}^{x}-1}$是奇函数,则a的值是(  )
A.0B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,∠BAD=30°,AB=4,AC=2,点D在BC上,且BC=2BD
(1)求BC的长;
(2)求tan(B+60°)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.“a≤-1”是“函数f(x)=|(ax-1)x|在区间(0,+∞)上单调递增”的充分不必要条件.
(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设六边形ABCDEF为正六边形,$\overrightarrow{AB}$=$\overrightarrow{m}$,$\overrightarrow{AE}$=$\overrightarrow{n}$,$\overrightarrow{BE}$=$\overrightarrow{n}$-$\overrightarrow{m}$(用$\overrightarrow{m}$,$\overrightarrow{n}$表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点为F($\sqrt{2}$,0),离心率为$\frac{\sqrt{6}}{3}$.
(1)求椭圆C的标准方程;
(2)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点),点D在椭圆C上,且AD⊥AB,直线BD与x轴、y轴分别交于M、N两点,设直线BD,AM的斜率分别为k1,k2,证明:存在常数λ使得k1=λk2,并求出λ的值.

查看答案和解析>>

同步练习册答案