精英家教网 > 高中数学 > 题目详情
14.偶函数定义在R上,当x>0时,f(x)<xf′(x),且 f(1)=0,则不等式xf(x)>0的解集为(-1,0)∪(1,+∞).

分析 构造函数g(x)=$\frac{f(x)}{x}$,利用g(x)的单调性和奇偶性解不等式.

解答 解:令g(x)=$\frac{f(x)}{x}$,则g′(x)=$\frac{xf′(x)-f(x)}{{x}^{2}}$,
当x>0时,f(x)<xf′(x),
故x>0时,g′(x)>0,g(x)在(0,+∞)递增,
而函数是偶函数,故g(x)在(-∞,0)递减,
∴x>0时,不等式xf(x)>0,即f(x)>0=f(1),
解得:x>1,
x<0时,不等式xf(x)>0,即f(x)<0=f(-1),
解得:-1<x<0,
故不等式的解集是(-1,0)∪(1,+∞),
故答案为:(-1,0)∪(1,+∞).

点评 本题主要考查函数的单调性与奇偶性的应用,利用条件构造函数,然后利用导数研究函数的单调性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知集合M={x|x2-2x-3=0},N={x|-2<x≤4},M∩N=(  )
A.{x|-1<x≤3}B.{x|-1<x≤4}C.{-3,1}D.{-1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线a1x+b1y+5=0和a2x+b2y+5=0的交点是P(2,1),则过两点Q1(a1,b1)和Q2(a2,b2)的直线方程是(  )
A.x-2y+5=0B.2x-y+5=0C.x+2y+5=0D.2x+y+5=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\frac{{x}^{2}}{2}$-alnx(a>0)在[1,2]上为单调函数,则a的取值范围为(  )
A.(-∞,1]B.(-∞,1)∪(4,+∞)C.(0,1)∪(4,+∞)D.(0,1]∪[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)的定义域为(-∞,0)∪(0,+∞),图象关于y轴对称,且当x<0时,f′(x)>$\frac{f(x)}{x}$恒成立,设a>1,则实数P=$\frac{{4af({a+1})}}{a+1}$,M=2$\sqrt{a}f({2\sqrt{a}})$,$N=({a+1})f({\frac{4a}{a+1}})$的大小关系为(  )
A.P<M<NB.P>M>NC.M<P<ND.M>P>N

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}的首项a1=1且an=-$\frac{1}{2}$an-1(n≥2),则a4等于(  )
A.-1B.$\frac{1}{2}$C.$\frac{17}{24}$D.-$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.根据下列条件,写出数列的前4项,并归纳猜想它的通项公式(不需证明).
(1)a1=0,an+1=$\frac{1}{2-{a}_{n}}$; 
(2)对一切的n∈N*,an>0,且2$\sqrt{{S}_{n}}$=an+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.实数a,b,c,d满足|b-a+4|+(c+d2-3lnd)2=0,则(b-d)2+(a-c)2的最小值是18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.将函数f(x)=Asin(ωx+φ)+k(A>0,ω>0,0<φ<π)的图象向右平移$\frac{2π}{3}$个单位,所得曲线的一部分如图所示,则f(x)的解析式为(  )
A.f(x)=$\frac{3}{2}$sin($\frac{12}{11}$x-$\frac{21π}{22}$)+1B.f(x)=$\frac{3}{2}$sin($\frac{12}{11}$x+$\frac{21π}{22}$)+$\frac{1}{2}$
C.f(x)=2sin($\frac{11}{12}$x+$\frac{21π}{22}$)-$\frac{1}{2}$D.f(x)=$\frac{3}{2}$sin($\frac{12}{11}$x+$\frac{5π}{22}$)+$\frac{1}{2}$

查看答案和解析>>

同步练习册答案