精英家教网 > 高中数学 > 题目详情
12.已知$\overrightarrow{a}$=t$\overrightarrow{{e}_{1}}$+(k2-1)$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=(2t+1)$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$,且$\overrightarrow{a}$∥$\overrightarrow{b}$,试求t关于k的函数.

分析 由$\overrightarrow{a}$∥$\overrightarrow{b}$知3t+(k2-1)(2t+1)=0,从而解得.

解答 解:∵$\overrightarrow{a}$=t$\overrightarrow{{e}_{1}}$+(k2-1)$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=(2t+1)$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$,且$\overrightarrow{a}$∥$\overrightarrow{b}$,
∴3t+(k2-1)(2t+1)=0,
∴t=$\frac{1-{k}^{2}}{2{k}^{2}+1}$.

点评 本题考查了平行向量的应用及转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知a,b,c分别是△ABC中角A,B,C的对边长,b和c是关于x的方程x2-9x+25cosA=0的两个根(b>c),且$({sinB+sinC+sinA})({sinB+sinC-sinA})=\frac{18}{5}sinBsinC$,则△ABC的形状为(  )
A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=5sin2x+$\sqrt{3}$sinxcosx+6cos2x+m的最大值为1,求m值及函数f(x)的最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.E、F是四边形ABCD的对角线AC、BD的中点,已知$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{CD}$=$\overrightarrow{c}$,求向量$\overrightarrow{EF}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知向量法$\overrightarrow{{l}_{1}}$≠$\overrightarrow{0}$,λ∈R,$\overrightarrow{a}$=$\overrightarrow{{l}_{1}}$+λ$\overrightarrow{{l}_{2}}$,$\overrightarrow{b}$=2$\overrightarrow{{l}_{2}}$,若向量$\overrightarrow{a}$和$\overrightarrow{b}$共线,则下列关系一定成立的是(  )
A.λ=0B.$\overrightarrow{{l}_{2}}$=$\overrightarrow{0}$C.$\overrightarrow{{l}_{1}}$∥$\overrightarrow{{l}_{2}}$D.$\overrightarrow{{l}_{2}}$=$\overrightarrow{0}$或λ=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知sinαtanα≥0,则α的取值集合为{α|2kπ-$\frac{π}{2}$<α<2kπ+$\frac{π}{2}$或α=(2k+1)π(k∈Z)}..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=log2(6+x)在区间[2,+∞)上的最小值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算:$\frac{1}{2}$sin30°+$\frac{\sqrt{2}}{2}$cos45°-2tan30°tan60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2sinωxcosωx-2$\sqrt{3}$cos2ωx+$\sqrt{3}$(ω>0),且y=f(x)的图象的两相邻对称轴间的距离为$\frac{π}{2}$.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)已知△ABC的内角A,B,C的对边分别为a,b,c,角C为锐角,且f(C)=$\sqrt{3}$.c=3,sinB=2sinA,求△ABC的面积.

查看答案和解析>>

同步练习册答案