精英家教网 > 高中数学 > 题目详情
19.在△ABC中,已知$a=3\sqrt{3}$,b=4,A=30°,则sinB=$\frac{{2\sqrt{3}}}{9}$.

分析 由已知利用正弦定理即可计算得解.

解答 解:∵$a=3\sqrt{3}$,b=4,A=30°,
∴由正弦定理可得:sinB=$\frac{b•sinA}{a}$=$\frac{4×\frac{1}{2}}{3\sqrt{3}}$=$\frac{{2\sqrt{3}}}{9}$.
故答案为:$\frac{{2\sqrt{3}}}{9}$.

点评 本题主要考查了正弦定理在解三角形中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.在△ABC中,∠A=60°,b=1,S△ABC=$\sqrt{3}$,则$\frac{a-2b+c}{sinA-2sinB+sinC}$的值等于(  )
A.$\frac{{2\sqrt{39}}}{3}$B.$\frac{26}{3}\sqrt{3}$C.$\frac{8}{3}\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知对任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x<0时,导函数分别满足f′(x)>0,g′(x)<0,则x>0时,成立的是(  )
A.f′(x)>0,g′(x)<0B.f′(x)>0,g′(x)>0C.f′(x)<0,g′(x)<0D.f′(x)<0,g′(x)>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知a1=1,a2=-$\frac{1}{1+{a}_{1}}$,a3=-$\frac{1}{1+{a}_{2}}$,…,an+1=-$\frac{1}{1+{a}_{n}}$,….那么a2017=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆C经过A(3,3),B(2,4)两点,且圆心C在直线y=3x-5上.
(1)求圆C的标准方程;
(2)设P(-m,0),Q(m,0)(m>0),若圆C上存在点M,使得点M也在以PQ为直径的圆上,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.随着我国经济的发展,居民的储蓄款逐年增长,设某地区城乡居民人民币储蓄存款(年底余额)如表:
年份20102011201220132014
时间代号t12345
储蓄存款y(千亿元)567810
(1)取y关于t的回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$t+a;
(2)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求下列函数的导数:
(1)y=(x+1)2(x-1); 
(2)y=x2sin x; 
(3)y=$\frac{{e}^{x}+1}{{e}^{x}-1}$
(4)f(x)=$\frac{{e}^{x}}{x-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E,F分别是棱BC,CC1的中点,P是侧面BCC1B1内一点,若A1P∥平面AEF,则线段AP长度的取值范围是[$\frac{3\sqrt{2}}{4}$,$\frac{\sqrt{5}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow{b}$=(cosβ,sinβ),α,β∈(0.π)且$\overrightarrow{a}$⊥$\overrightarrow{b}$,求α-β的值.

查看答案和解析>>

同步练习册答案