精英家教网 > 高中数学 > 题目详情

(本题满分12分)
已知函数f(x)=x3+ax2+(a+6)x+b(a,b∈R).
(1)若函数f(x)的图象过原点,且在原点处的切线斜率是3,求a,b的值;
(2)若f(x)为R上的单调递增函数,求a的取值范围.

解:(1)由函数f(x)的图象过原点,得b="0," ………………………………1分
又f′(x)=3x2+2ax+(a+6), …………………………………………………3分
f(x)在原点处的切线斜率是3,则a+6=3,所以a="-3." ………………………6分
(2)若f(x)为R上的单调递增函数,则f′(x) 在R上恒成立.
即3x2+2ax+(a+6)≥0在R上恒成立,………………………………………8分
因此Δ≤0,有4a2-12(a+6) ≤0    ………………………………………10分
即a2-3a-18 ≤0解得……………………………………………12分

解析试题分析:(Ⅰ)根据函数f(x)的图象过点P(1,2)与函数图象在点P处的切线斜率为8,建立关于a和b的方程组,解之即可;
(Ⅱ)由(Ⅰ)得f'(x),f(x)为R上的单调递增函数则令f'(x)0即可求出a的范围.
考点:本试题主要考查了导函数的正负与原函数的单调性之间的关系,以及利用导数研究曲线上某点切线方程等基础知识,同时考查了分析与解决问题的综合能力,属于基础题。
点评:解决该试题的关键对于导数几何意义的运用和单调递增时要满足到导函数恒大于等于零来得到。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知,其中是自然对数的底数,
(1)讨论时,的单调性。
(2)求证:在(1)条件下,
(3)是否存在实数,使得最小值是3,如果存在,求出的值;如果不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知,在时,都取得极值。
(Ⅰ)求的值;
(Ⅱ)若都有恒成立,求c的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的一个极值点.
(Ⅰ)求函数的单调区间;
(Ⅱ)若当时,恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分) 
已知a∈R,函数f(x)=4x3-2ax+a.
(1)求f(x)的单调区间;
(2)证明:当0≤x≤1时,f(x)+|2-a|>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数,且对于任意实数,恒有
(1)求函数的解析式;
(2)函数有几个零点?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)若函数处与直线相切;
①求实数的值;②求函数上的最大值;
(2)当时,若不等式对所有的都成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分)设
(1)请写出的表达式(不需证明);
(2)求的极值
(3)设的最大值为的最小值为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(1)当时,求的极值;
(2)当时,试比较的大小;
(3)求证:).

查看答案和解析>>

同步练习册答案