精英家教网 > 高中数学 > 题目详情
命题“?x∈R,使得x2+x+1<0”的否定是(  )
A、?x∈R,均有x2+x+1<0
B、?x∈R,均有x2+x+1≥0
C、?x∈R,使得 x2+x+1<0
D、?x∈R,均有x2+x+1<0
考点:命题的否定
专题:简易逻辑
分析:直接利用特称命题的否定是全称命题写出结果即可.
解答: 解:因为特称命题的否定是全称命题,所以命题“?x∈R,使得x2+x+1<0”的否定是:?x∈R,均有x2+x+1≥0.
故选:B.
点评:本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+3x+2
x2+1
,则函数的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数y=f(x)的图象关于点(-
3
4
,0)
成中心对称,对任意的实数x都有f(x)=-f(x+
3
2
),且f(-1)=1,f(0)=-2,则f(1)+f(2)+f(3)+…+f(2014)的值为(  )
A、2B、1C、-1D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={-2,4,x},B={2,x2,y},若A=B,则y=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某产品的广告费用x与销售额y的统计数据如下表:
广告费用x(万元)2345
销售额y(万元)20334348
根据上表数据用最小二乘法求得y关于x的线性回归方程y=
b
x+
a
中,
b
=9.4则据此模型预测,广告费用为6万元时,销售额约为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M(4,1),点F为抛物线C:y2=4x的焦点,点P在抛物线上,若|PF|+|PM|取最小值,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:方程
x2
2
+
y2
1-k
=1
表示焦点在x轴上的椭圆;命题q:?x∈R,kx2+kx+k+1>0.若“p∧q”与“?p”同时为假命题,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1中,M,N分别是CC1,BC的中点,则过A、M、N三点的正方体ABCD-A1B1C1D1的截面形状是(  )
A、平行四边形B、直角梯形
C、等腰梯形D、以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z是方程z2+2z+2=0的解,若Imz>0,且
a
z
-
.
z
=b+bi(a,b∈R+),则
1
a
+
1
b
的最小值为
 

查看答案和解析>>

同步练习册答案