精英家教网 > 高中数学 > 题目详情
15.抛物线C:x2=ay(a>0)的焦点与双曲线E:x2-2y2=2的右焦点的连线交C于第一象限内的点M,若C在点M处的切线平行于E的一条渐近线,则实数a=$\sqrt{2}$.

分析 由曲线方程求出抛物线与双曲线的焦点坐标,由两点式写出过两个焦点的直线方程,求出函数y=$\frac{1}{a}$x2在x取直线与抛物线交点M的横坐标时的导数值,由其等于双曲线渐近线的斜率得到交点横坐标与a的关系,把M点的坐标代入直线方程即可求得a的值.

解答 解:由抛物线C:x2=ay(a>0),可得焦点坐标为F(0,$\frac{a}{4}$).
由双曲线E:x2-2y2=2得a=$\sqrt{2}$,b=1,c=1.
所以双曲线的右焦点为(1,0).
则抛物线的焦点与双曲线的右焦点的连线所在直线方程为ax+4y-a=0①.
设该直线交抛物线于M(x0,$\frac{{{x}_{0}}^{2}}{a}$),则C在点M处的切线的斜率为$\frac{2{x}_{0}}{a}$.
由题意可知$\frac{2{x}_{0}}{a}$=$\frac{\sqrt{2}}{2}$,得x0=$\frac{\sqrt{2}}{4}$a,代入M点得M($\frac{\sqrt{2}}{4}$a,$\frac{1}{8}$a)
把M点代入①得:a×$\frac{\sqrt{2}}{4}$a+4×$\frac{1}{8}$a-a=0.
解得a=$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查了双曲线的简单几何性质,考查了利用导数研究曲线上某点的切线方程,函数在曲线上某点处的切线的斜率等于函数在该点处的导数,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=sin(2x+\frac{π}{3}),x∈R$.
(Ⅰ)在给定坐标系中,用“五点法”作出函数f(x)在一个周期上的图象(先列表,再画图);
(Ⅱ)求f(x)的对称中心;
(Ⅲ)求直线$y=\frac{1}{2}$与函数y=f(x)的图象交点的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.双曲线$\frac{{x}^{2}}{3}-\frac{{y}^{2}}{3}$=1的渐近线方程为(  )
A.y=±3xB.y=±$\sqrt{3}$xC.y=±xD.y=±$\frac{\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx-ax在点A(2,f(2))处的切线l的斜率为$\frac{3}{2}$.
(1)求实数a的值;
(2)证明:函数f(x)的图象恒在直线l的下方(点A除外).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若$\left\{\begin{array}{l}x+4y-8≤0\\ x≥0\\ y>0\end{array}\right.$在区域内任取一点P,则点P落在圆x2+y2=2内的概率为$\frac{π}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准〜用水量不超过a的部分按照平价收费,超过a的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了 100位居民某年的月均用水量(单位:t),制作了频率分布直方图,
(Ⅰ)由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整;
(Ⅱ)用样本估计总体,如果90%的居民每月的用水量不超出标准,则月均用水量的最低标准定为多少吨,并说明理由(精确到0.01);
(Ⅲ)若将频率视为概率,现从该市某大型生活社区随机调查3位居民的月均用水量(看作有放回的抽样),其中月均用水量不超过(Ⅱ)中最低标准的人数为X,求X的分布列和均值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,A点的直角坐标为$(\sqrt{3}+2cosα,1+2sinα)$(α为参数).在以原点O为极点,x轴正半轴为极轴的极坐标中,直线的极坐标方程为$2ρcos(θ+\frac{π}{6})=m$.(m为实数).
(1)试求出动点A的轨迹方程(用普通方程表示)
(2)设A点对应的轨迹为曲线C,若曲线C上存在四个点到直线的距离为1,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.过正三角形的外接圆的圆心且平行于一边的直线分正三角形两部分的面积比为4:5,类比此性质,猜想过正四面体(底面是正三角形,侧面是三个完全相同的等边三角形,顶点在底面的投影是底面正三角形的中心)的外接球的球心且平行于一个面的平面分正四面体两部分的体积比为27:37.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=lg({\frac{4-x}{4+x}})$,其中x∈(-4,4)
(1)判断并证明函数f(x)的奇偶性;
(2)判断并证明函数f(x)在(-4,4)上的单调性;
(3)是否存在这样的负实数k,使f(k-cosθ)+f(cos2θ-k2)≥0对一切θ∈R恒成立,若存在,试求出k取值的集合;若不存在,说明理由.

查看答案和解析>>

同步练习册答案