精英家教网 > 高中数学 > 题目详情
如图,在△ABC中,AD⊥AB,
BC
=
3
BD
,|
AD
|=1,则
AC
AD
=
 

考点:平面向量数量积的运算
专题:计算题,解三角形,平面向量及应用
分析:运用向量的数量积的定义,结合条件可得
AC
AD
=|
AC
|cos∠DAC,再由诱导公式可得
AC
AD
=|
AC
|sin∠BAC,结合三角形ABC中的正弦定理和直角三角形的锐角三角函数的定义,计算即可得到所求值.
解答: 解:
AC
AD
=|
AC
|•|
AD
|cos∠DAC,
∵|
AD
|=1,
AC
AD
=|
AC
|cos∠DAC,
∵∠BAC=
π
2
+∠DAC,
∴cos∠DAC=sin∠BAC,
AC
AD
=|
AC
|cos∠DAC=|
AC
|sin∠BAC,
在△ABC中,由正弦定理得
|
AC
|
sinB
=
|
BC
|
sin∠BAC

变形得|
AC
|sin∠BAC=|
BC
|sinB,
AC
AD
=|
AC
|cos∠DAC=|
AC
|sin∠BAC
=|
BC
|sinB=|
BC
|•
|
AD
|
|
BD
|
=
3

故答案为:
3
点评:本题考查向量的数量积的定义和性质,同时考查诱导公式和正弦定理的运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=ax(a>0且a≠1)在[1,2]上的最大值与最小值之和为6,记f(x)=
ax-1
ax+1

(1)求a的值;
(2)判断函数f(x)的奇偶性;
(3)求不等式f(x)>
15
17
的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义
a
*
b
=|a|×|b|sinθ,θ为
a
b
的夹角,已知点A(-3,2),点B(2,3),O是坐标原点,则
OA
*
OB
等于(  )
A、5B、13C、0D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,若存在非零实数h使得对于任意x∈M(M⊆D),有x+h∈M,且f(x+h)≥f(x),则称f(x)为M上的h高调函数.现给出下列命题:
①函数f(x)=(
1
2
x为R上的1高调函数;
②函数f(x)=sin2x为R上的π高调函数;
③若函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是[2,+∞).
④函数f(x)=1g(|x-2|+1)上的2高调函数.
其中正确命题的序号是
 
(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,F1,F2是椭圆C:
x2
a2
+
y2
b2
=1的左右两个焦点,|F1F2|=4,长轴长为6,又A,B分别是椭圆C上位于x轴上方的两点,且满足
AF1
=2
BF2

(Ⅰ)求椭圆C的方程;
(Ⅱ)求直线AF1的方程;
(Ⅲ)求四边形ABF2F1的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知斜四棱体ABCD-A1B1C1D1各棱长都是2,∠BAD=∠A1AD=60°,E、O分别是棱CC1和棱AD的中点,平面ADD1A1⊥平面ABCD.
(1)求证:OC∥平面AED1
(2)求二面角E-AD1-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
3
sinx,cosx),
b
=(cosx,cosx),设函数f(x)=
a
b

(Ⅰ)求函数f(x)=
a
b
的单调增区间;
(Ⅱ)若x∈[-
π
6
π
3
],求函数f(x)=的最值,并指出f(x)取得最值时x的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
AB
=(6,1),
BC
=(x,y),
CD
=(-2,-3)
(1)若
BC
DA
,求y=f(x)的解析式
(2)在(1)的条件下,若
AC
BD
,求x与y的值以及四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

用分析法证明:(
2
+1)2
17
5
3

查看答案和解析>>

同步练习册答案