精英家教网 > 高中数学 > 题目详情
4.已知等差数列{an}满足a1=1,an+2-an=6,则a11等于(  )
A.31B.32C.61D.62

分析 由等差数列的性质依次求出a3,a5,a7,a9,a11

解答 解:∵等差数列{an}满足a1=1,an+2-an=6,
∴a3=6+1=7,
a5=6+7=13,
a7=6+13=19,
a9=6+19=25,
a11=6+25=31.
故选:A.

点评 本题考查等差数列的第11项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.集合A={y|y=2x,x∈R},B={x∈Z|log6(x+2)<1},则A∩B=(  )
A.{x|0<x<4}B.{1,2,3}C.{0,1,2,3}D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设样本数据x1、x2,…,x2017的方差是4,若yi=xi-1(i=1,2…,2017),则y1,y2,…,y2017的方差为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若等差数列{an}的前n项和Sn满足S10=100,数列a1,a2-a1,a3-a2,…,an-an-1的前5项和为9.
(1)求数列{an}的通项公式;
(2)若数列{bn}的前n项和为Tn,bn=$\frac{{a}_{n}+3}{({n}^{2}+2n)^{2}}$,求证:Tn<$\frac{5}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}的前n项和为Sn,若Sm-1=-4,Sm=0,Sm+2=14(m≥2,且m∈N*).
(1)求m的值;
(2)若数列{bn}满足$\frac{{a}_{n}}{2}$=logabn(n∈N*),求数列{(an+6)•bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数fn(x)=a1x+a2x2+a3x3+…+anxn,且fn(-1)=(-1)nn,n∈N*,设函数g(n)=$\left\{\begin{array}{l}{{a}_{n},n为奇数}\\{g(\frac{n}{2}),n为偶数}\end{array}\right.$,若bn=g(2n+4),n∈N*,则数列{bn}的前n(n≥2)项和Sn等于$\left\{\begin{array}{l}{6,n=2}\\{{2}^{n}+n,n≥3}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=log2(|x+1|+|x-1|-a)
(1)当a=3时,求函数f(x)的定义域;
(2)若不等式f(x)≥2的解集为R,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数 f ( x )=sin(2x+$\frac{π}{3}$)+cos(2x+$\frac{π}{6}$)+2sin x cos x.
(Ⅰ)求函数 f ( x) 图象的对称轴方程;
(Ⅱ)将函数 y=f ( x) 的图象向右平移 $\frac{π}{12}$个单位,再将所得图象上各点的横坐标伸长为原来的 4 倍,纵坐标不变,得到函数 y=g ( x) 的图象,求 y=g ( x) 在[$\frac{π}{3}$,2π]上的值域.

查看答案和解析>>

同步练习册答案