精英家教网 > 高中数学 > 题目详情
14.如图所示,在四边形ABCD中,AD=2,CD=3,∠D=2∠B且cosB=$\frac{\sqrt{6}}{4}$
(Ⅰ)求△ACD的面积;
(Ⅱ)若∠ACB=60°,求AB的长.

分析 (Ⅰ)由题意和二倍角公式可得cosD,进而可得sinD,代入面积公式S=$\frac{1}{2}$•AD•CD•sinD,计算可得;
(II)在△ACD中,由余弦定理可得AC,进而在△ABC中由正弦定理可得AB.

解答 解:(Ⅰ)∵∠D=2∠B,∴cosD=2cos2B-1=2×($\frac{\sqrt{6}}{4}$)2-1=-$\frac{1}{4}$,
∵∠D∈(0,π),∴sinD=$\sqrt{1-co{s}^{2}D}$=$\frac{\sqrt{15}}{4}$,
∵AD=2,CD=3,∴△ACD的面积S=$\frac{1}{2}$•AD•CD•sinD=$\frac{3}{4}$$\sqrt{15}$;
(II)在△ACD中,由余弦定理可得AC=$\sqrt{A{D}^{2}+C{D}^{2}-2AD•CD•cosD}$
=$\sqrt{9+4-2×3×2×(-\frac{1}{4})}$=4
在△ABC中,由正弦定理可得$\frac{AC}{sinB}$=$\frac{AB}{sin∠ACB}$,
∴AB=$\frac{4×\frac{\sqrt{3}}{2}}{\frac{\sqrt{10}}{4}}$=$\frac{4\sqrt{30}}{5}$.

点评 本题考查正余弦定理解三角形,涉及三角形的面积公式,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知f(x)=ax2-(a+2)x+2.
(1)若实数a<0,求关于x的不等式f(x)>0的解集;
(2)若“$\frac{1}{2}$≤x≤$\frac{3}{4}$”是“f(x)+2x<0”的充分条件,求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知点A(0,1),B(3,2),C(a,0),若A,B,C三点共线,则a=(  )
A.$\frac{1}{2}$B.-1C.-2D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某人上午7时,乘摩托艇从A港出发前往B港,所需时间x至少为3小时,至多为10小时,然后从B港乘汽车前往C市,所需时间y至少为2.5小时,至多为12.5小时,且要求到达C市的时间为同一天下午4时至9时之间,若从A港到C市所需要的经费ω=100+3(5-x)+2(8-y)元,则所需经费的最小值为93(元)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,若A=30°,a=2,b=2$\sqrt{3}$,则此三角形解的个数为(  )
A.0个B.1个C.2个D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线y=k(x-1)+2与抛物线x2=4y的位置关系为(  )
A.相交B.相切C.相离D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.将(1-$\frac{1}{{x}^{2}}$)n(n∈N+)的展开式中x-4的系数记为an,则$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{2016}}$=$\frac{2015}{1008}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆C:(x-3)2+y2=4,M是圆C的圆心,Q是y轴上的动点,QA,QB分别切圆C于A,B两点
(Ⅰ)若Q(0,2),求切线QA,QB的方程
(Ⅱ)求四边形QAMB面积的最小值
(Ⅲ)若|AB|=$\frac{8\sqrt{2}}{3}$,求直线MQ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.投掷一个质地均匀的、每个面上标有一个数字的正方体玩具,它的六个面中,有两个面标的数字是0,两个面标的数字是2,两个面标的数字是3,将此玩具边续抛掷两次,以两次朝上一面出现的数字分别作为点P的横坐标和纵坐标.
(1)求点P落在区域C:x2+y2=9内(不含边界)的概率;
(2)若以落在区域C(第1问中)上的所有点为顶点作面积最大的多边形区域M,在区域C上随机撤一粒豆子,求豆子落在区域M上的概率.

查看答案和解析>>

同步练习册答案