精英家教网 > 高中数学 > 题目详情

【题目】已知动点到直线的距离是它到点的距离的倍.

(1)求动点的轨迹的方程;

(2)设轨迹上一动点满足: ,其中是轨迹上的点,且直线的斜率之积为,若为一动点, 为两定点,求的值.

【答案】(I) ; (II)

【解析】试题分析:(1)根据所给条件列出关于点坐标的等式,对等式化简可得的轨迹方程为椭圆;(2)设 ,利用所给向量间的关系可用两点的坐标表示点坐标.再由三点在椭圆上,可得,由斜率乘积为,可得,进一步得为椭圆上点, 为焦点,由椭圆定义可得结果.

试题解析:(I)点到直线的距离是到点的距离的倍,

, 化简得

(II)设 ,则由

∵点TPQ在椭圆上,

∴所以

分别为直线OPOQ的斜率,由题意知,

,因此

.

所以N点是椭圆上的点,

恰为该椭圆的左、右焦点,由椭圆的定义,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】天气预报是气象专家根据预测的气象资料和专家们的实际经验,经过分析推断得到的,在现实的生产生活中有着重要的意义.某快餐企业的营销部门经过对数据分析发现,企业经营情况与降雨天数和降雨量的大小有关.

(Ⅰ)天气预报说,在今后的四天中,每一天降雨的概率均为,求四天中至少有两天降雨的概率;

(Ⅱ)经过数据分析,一天内降雨量的大小(单位:毫米)与其出售的快餐份数成线性相关关系,该营销部门统计了降雨量与出售的快餐份数的数据如下:

降雨量(毫米)

1

2

3

4

5

快餐数(份)

50

85

115

140

160

试建立关于的回归方程,为尽量满足顾客要求又不造成过多浪费,预测降雨量为6毫米时需要准备的快餐份数.(结果四舍五入保留整数)

附注:回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地政府为了对房地产市场进行调控决策,统计部门对外来人口和当地人口进行了买房的心理预期调研,用简单随机抽样的方法抽取了110人进行统计,得到如下列联表(不全):

已知样本中外来人口数与当地人口数之比为3:8.

(1)补全上述列联表;

(2)从参与调研的外来人口中用分层抽样方法抽取6人,进一步统计外来人口的某项收入指标,若一个买房人的指标记为3,一个犹豫人的指标记为2,一个不买房人的指标记为1,现在从这6人中再随机选取3人,求选取的3人的指标之和大于5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,顺次连接椭圆的四个顶点得到的四边形的面积为,点.

(Ⅰ)求椭圆的方程.

(Ⅱ)已知点,是椭圆上的两点.

(ⅰ)若,且为等边三角形,求的面积;

(ⅱ)若,证明: 不可能为等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,且),,(其中的导函数).

(1)当时,求的极大值点;

(2)讨论的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】长方体ABCD﹣A1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点.
(1)求证:BD1∥平面A1DE;
(2)求证:A1D⊥平面ABD1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015 年 12 月,华中地区数城市空气污染指数“爆表”,此轮污染为 2015 年以来最严重的污染过程,为了探究车流量与的浓度是否相关,现采集到华中某城市 2015 年 12 月份某星期星期一到星期日某一时间段车流量与的数据如表:

时间

星期一

星期二

星期三

星期四

星期五

星期六

星期日

车流量(万辆)

1

2

3

4

5

6

7

的浓度(微克/立方米)

28

30

35

41

49

56

62

(1)由散点图知具有线性相关关系,求关于的线性回归方程;(提示数据:

(2)利用(1)所求的回归方程,预测该市车流量为 12 万辆时的浓度.

参考公式:回归直线的方程是

其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面为平行四边形,平面平面 ,.

(Ⅰ)求证:

(Ⅱ)若三角形是边长为的等边三角形,求三棱锥外接球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:x+y﹣4=0,定点P(2,0),E,F分别是直线l和y轴上的动点,则△PEF的周长的最小值为(  )
A.2
B.6
C.3
D.2

查看答案和解析>>

同步练习册答案