【题目】某沿海特区为了缓解建设用地不足的矛盾,决定进行围海造陆以增加陆地面积.如图,两海岸线
,
所成角为
,现欲在海岸线
,
上分别取点
,
修建海堤,以便围成三角形陆地
,已知海堤
长为6千米.
![]()
(1)如何选择
,
的位置,使得
的面积最大;
(2)若需要进一步扩大围海造陆工程,在海堤
的另一侧选取点
,修建海堤
,
围成四边形陆地.当海堤
与
的长度之和为10千米时,求四边形
面积的最大值.
【答案】(1)当
,
两点距离
点都为
千米时,最大面积为
(平方千米);
(2)四边形
面积的最大值为
(平方千米).
【解析】
(1)设
,
,由余弦定理得:
,
因为
,即
,当且仅当
时取得等号;
(2)要求四边形
面积的最大值,只需求
面积的最大值.在
中,
,所以点
的轨迹是以
,
为焦点,长轴长10的椭圆(夹在两海岸线
,
区域内的曲线),根据椭圆的几何性质,求出
点到
距离的最大值即可得到最大面积.
(1)设
,
,(单位:千米)
在
中,由余弦定理得:
,
因为
,
,
,
,
所以,
,
故
,当且仅当
时取得等号,
此时,
(平方千米).
所以,当
,
两点距离
点都为
千米时,
的面积最大,最大面积为
(平方千米).
(2)由(1)知,要求四边形
面积的最大值,只需求
面积的最大值.
在
中,
,所以点
的轨迹是以
,
为焦点,长轴长10的椭圆(夹在两海岸线
,
区域内的曲线),
以
所在直线为
轴,
的垂直平分线为
轴建立平面直角坐标系,
设点
所在的椭圆方程为
,焦距为
,
由
,
得:
,
所以点
所在的椭圆方程为
.
设
,则
,因为
,
所以
(平方千米),当且仅当
(千米)时取得等号.
所以,四边形
面积的最大值为
(平方千米).
科目:高中数学 来源: 题型:
【题目】如果函数y=f(x)的导函数的图象如图所示,给出下列判断:
![]()
①函数y=f(x)在区间
内单调递增;
②函数y=f(x)在区间
内单调递减;
③函数y=f(x)在区间(4,5)内单调递增;
④当x=2时,函数y=f(x)有极小值;
⑤当x=
时,函数y=f(x)有极大值.
则上述判断中正确的是( )
A. ①② B. ②③
C. ③④⑤ D. ③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若存在实数
使得
则称
是区间
的
一内点.
(1)求证:
的充要条件是存在
使得
是区间
的
一内点;
(2)若实数
满足:
求证:存在
,使得
是区间
的
一内点;
(3)给定实数
,若对于任意区间
,
是区间的
一内点,
是区间的
一内点,且不等式
和不等式
对于任意
都恒成立,求证:![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
(1)存在实数
使
;
(2)直线
是函数
图象的一条对称轴;
(3)
(
)的值域是
;
(4)若
,
都是第一象限角,且
,则
.
其中正确命题的序号为( )
A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数).以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求
的极坐标方程;
(2)将曲线
上所有点的横坐标不变,纵坐标缩短到原来的
倍,得到曲线
,若
与
的交点为
(异于坐标原点
),
与
的交点为
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若存在常数 k(k∈N * , k≥2)、d、t( d , t∈R),使得无穷数列 {a n }满足a n +1
,则称数列{an }为“段差比数列”,其中常数 k、d、t 分别叫做段长、段差、段比.设数列 {bn }为“段差比数列”.
(1)已知 {bn }的首项、段长、段差、段比分别为1、 2 、 d 、 t .若 {bn }是等比数列,求 d 、 t 的值;
(2)已知 {bn }的首项、段长、段差、段比分别为1、3 、3 、1,其前 3n 项和为 S3n .若不等式 S3n≤ λ 3n1对 n ∈ N *恒成立,求实数 λ 的取值范围;
(3)是否存在首项为 b,段差为 d(d ≠ 0 )的“段差比数列” {bn },对任意正整数 n 都有 bn+6 = bn ,若存在, 写出所有满足条件的 {bn }的段长 k 和段比 t 组成的有序数组 (k, t );若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果一个数列从第2项起,每一项与它前一项的差都大于2,则称这个数列为“阿当数列”.
(1)若数列
为“阿当数列”,且
,
,
,求实数
的取值范围;
(2)是否存在首项为1的等差数列
为“阿当数列”,且其前
项和
满足
?若存在,请求出
的通项公式;若不存在,请说明理由.
(3)已知等比数列
的每一项均为正整数,且
为“阿当数列”,
,
,当数列
不是“阿当数列”时,试判断数列
是否为“阿当数列”,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com