精英家教网 > 高中数学 > 题目详情
椭圆以x轴和y轴为对称轴,经过点(2,0),长轴长是短轴长的2倍,则椭圆的方程为(  )
A、
x2
4
+y2=1
B、
y2
16
+
x2
4
=1
C、
x2
4
+y2=1或
y2
16
+
x2
4
=1
D、
x2
4
+y2=1或
y2
4
+x2=1
考点:椭圆的简单性质
专题:计算题,分类讨论,圆锥曲线的定义、性质与方程
分析:运用椭圆的性质,得a=2b,再讨论焦点的位置,即可得到a,b的值,进而得到椭圆方程.
解答: 解:由于椭圆长轴长是短轴长的2倍,
即有a=2b,
由于椭圆经过点(2,0),
则若焦点在x轴上,则a=2,b=1,
椭圆方程为
x2
4
+y2
=1;
若焦点y轴上,则b=2,a=4,
椭圆方程为
y2
16
+
x2
4
=1.
故选C.
点评:本题考查椭圆的方程和性质,注意讨论焦点位置,考查运算能力,属于基础题和易错题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上递减,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的
 
条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x|2a-x|+2x,a∈R.
(1)若a=0,判断函数y=f(x)的奇偶性,并加以证明;
(2)若函数f(x)在R上是增函数,求实数a的取值范围.
(3)求y=f(x)在区间[1,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的导数f′(x)满足如下条件:
(1)当x<-1或x>
1
3
时,f′(x)>0;
(2)当-1<x<
1
3
时,f′(x)<0;
(3)当x=-1或x=
1
3
时,f′(x)=0,
试画出函数f(x)的大致图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:集合P={x|x2-
3
4
πx+
π2
8
≤0}
,求:函数f(x)=4sin2(
π
4
+x)-2
3
cos2x-3(x∈P)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinx+cosx,则f′(
π
3
)等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形)(  )
A、①②⑥B、①②③
C、④⑤⑥D、③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

若抛物线y2=
4x
m
(m>0)的焦点在圆x2+y2=1内,则实数m的取值范围是
 

查看答案和解析>>

同步练习册答案