分析 由正弦定理,余弦定理化简已知可求A的值,利用三角形面积公式可求bc=8,再利用(2AD)2+a2=2(b2+c2),结合基本不等式确定AD2的最小值,利用AG=2GD.即可求出AG的最小值.
解答
解:∵sin2B+sin2C+sinBsinC=sin2A,
∴由正弦定理可得,a2=b2+c2+bc,①
∴由余弦定理可得,cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=-$\frac{1}{2}$,
∴A=120°,
∵S△ABC=2$\sqrt{3}$,
∴$\frac{1}{2}$bcsinA=2$\sqrt{3}$,
∴bc=8,
∵AD是BC边上的中线,
∴由余弦定理可得:(2AD)2+a2=2(b2+c2)②,
∴由①②可得:4AD2=b2+c2-bc≥bc=8,
∴AD的最小值是$\sqrt{2}$,
∵点G为△ABC的重心,AG=2GD.
∴AG的最小值为$\frac{2\sqrt{2}}{3}$.
故答案为:$\frac{2\sqrt{2}}{3}$.
点评 本题主要考查了正弦定理、余弦定理,基本不等式在解三角形中的应用,考查学生分析解决问题的能力,正确运用正弦定理、余弦定理是解题的关键,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | “x2+x-2>0”是“x>l”的充分不必要条件 | |
| B. | “若am2<bm2,则a<b的逆否命题为真命题 | |
| C. | 命题“?x∈R,使得2x2-1<0”的否定是:“?x∈R,均有2x2-1<0” | |
| D. | 命题“若x=$\frac{π}{4}$,则tanx=1的逆命题为真命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | -8 | C. | $\frac{8}{9}$ | D. | -$\frac{8}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com