分析 由此想到构造函数g(x)=$\frac{f(x)}{{e}^{x}}$,求导后结合f'(x)>f(x),可知函数g(x)是实数集上的增函数,然后利用函数的单调性可求得不等式的解集
解答 解:令g(x)=$\frac{f(x)}{{e}^{x}}$,
则g′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$,
因为f'(x)>f(x),
所以g′(x)>0,
所以,函数g(x)为(-∞,+∞)上的增函数,
由ef(x)>f(1)ex,得:,即g(x)>g(1),
因为函数不等式$\frac{f(x)}{e^x}>\frac{f(1)}{e}$,
所以g(x)>g(1),
所以,x>1.
故答案为(1,+∞).
点评 本题考查了导数的运算法则,考查了不等式的解法,解答此题的关键是联系要求解的不等式,构造出函数,然后利用导数的运算法则判断出其导函数的符号,得到该函数的单调性.此题是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{5}}{5}$ | B. | -$\frac{\sqrt{5}}{5}$ | C. | $\frac{1}{5}$ | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com