精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ax+ (其中a,b为常数)的图象经过(1,2),(2, )两点.
(1)求函数f(x)的解析式;
(2)判断f(x)的奇偶性.

【答案】
(1)解:由已知有

解得

则f(x)=x+


(2)解:由题意f(x)的定义域为{x|x≠0},关于原点对称,

又f(﹣x)=﹣x﹣ =﹣(x+ )=﹣f(x),

∴f(x)是奇函数


【解析】(1)由条件可得a,b的方程组,解方程即可得到a,b,进而得到解析式;(2)运用奇偶性的定义,首先确定定义域是否关于原点对称,再计算f(﹣x),与f(x)比较,即可得到奇偶性.
【考点精析】解答此题的关键在于理解函数的奇偶性的相关知识,掌握偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.

(1)求该椭圆的标准方程;

(2)若是椭圆上的动点,求线段中点的轨迹方程;

(3)过原点的直线交椭圆于点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△OAB的顶点坐标为O(0,0),A(2,9),B(6,﹣3),点P的横坐标为14,且 ,点Q是边AB上一点,且
(1)求实数λ的值与点P的坐标;
(2)求点Q的坐标;
(3)若R为线段OQ上的一个动点,试求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个顶点分别为A(2,3),B(1,﹣2),C(﹣3,4),求
(1)BC边上的中线AD所在的直线方程;
(2)△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=ln(3﹣x)(x+1)的定义域为(
A.[﹣1,3]
B.(﹣1,3)
C.(﹣∞,﹣3)∪(1,+∞)
D.(﹣∞,﹣1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=
(1)证明:a、c、b成等差数列;
(2)求cosC的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品的广告费用x与销售额y的统计数据如下表

广告费用x(万元)

4

2

3

5

销售额y(万元)

49

26

39

54

根据上表可得回归方程 = x+ 为9.4,据此模型预报广告费用为6万元时销售额为(
A.63.6万元
B.65.5万元
C.67.7万元
D.72.0万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列{an}中,a1=25,S17=S9
(1)求{an}的通项公式;
(2)这个数列的前多少项的和最大?并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中错误的个数为(
①一个命题的逆命题为真,它的否命题也一定为真;
②若一个命题的否命题为假,则它本身一定为真;
的充要条件;
与a=b是等价的;
⑤“x≠3”是“|x|≠3”成立的充分条件.
A.2
B.3
C.4
D.5

查看答案和解析>>

同步练习册答案