精英家教网 > 高中数学 > 题目详情
已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点分别为F1,F2,点M(1,2)为双曲线C右支上一点,且F2在以线段MF1为直径的圆的圆周上,则双曲线C的离心率为(  )
A、
2
+1
B、2
2
-1
C、3+2
2
D、
6
+
2
2
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:由点M(1,2)为双曲线C右支上一点,且F2在以线段MF1为直径的圆的圆周上,可得MF2⊥F1F2,进而,求出a,c,即可求出双曲线C的离心率.
解答: 解:∵点M(1,2)为双曲线C右支上一点,且F2在以线段MF1为直径的圆的圆周上,
∴MF2⊥F1F2
∴2=
b2
a

1
a2
-
4
b2
=1

∴a=
2
-1,
∴c=
a2-b2
=1,
∴e=
c
a
=
1
2
-1
=
2
+1.
故选:A.
点评:本题考查双曲线C的离心率,考查学生的计算能力,确定MF2⊥F1F2,是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知|
a
|=
2
,|
b
|=1,且
a
b
的夹角为45°,则
a
b
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在梯形ABCD中,AD∥BC,∠ABC=90°,AB=AD=1,BC=3,则
AB
CD
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图程序框图表示的算法是(  )
A、将a、b、c按从小到大输出
B、将a、b、c按从大到小输出
C、输出a、b、c三数中的最大数
D、输出a、b、c三数中的最小数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知i是虚数单位,则(1-i)(2+i)=(  )
A、-3-iB、3-i
C、-3+iD、3+i

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=cos3x+sin2x-cosx,在[0,2π)上的最大值为(  )
A、
4
27
B、
8
27
C、
16
27
D、
32
27

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,点P(4,
3
)到圆C:ρ=4cos(θ+
π
3
)上一点距离的最小值为(  )
A、8B、10C、4D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=eax-lnx(a是实常数),下列结论正确的一个是(  )
A、a=1时,f(x)有极大值,且极大值点x0∈(
1
2
,1)
B、a=2时,f(x)有极小值,且极小值点x0∈(0,
1
4
C、a=
1
2
时,f(x)有极小值,且极小值点x0∈(1,2)
D、a<0时,f(x)有极大值,且极大值点x0∈(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

下表是某厂1~4月份用水量(单位:百吨)的一组数据:
月份x1234
用水量y4.5432.5
由散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归直线方程是
y
=-0.7x+a,求a的值.

查看答案和解析>>

同步练习册答案