精英家教网 > 高中数学 > 题目详情
已知|
a
|=
2
,|
b
|=1,且
a
b
的夹角为45°,则
a
b
=
 
考点:平面向量数量积的运算
专题:平面向量及应用
分析:利用数量积的定义即可得出.
解答: 解:∵|
a
|=
2
,|
b
|=1,且
a
b
的夹角为45°,
a
b
=|
a
| |
b
|cos45°
=
2
×1×
2
2
=1.
故答案为:1.
点评:本题查克拉数量积的定义,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知m(a),M(a)分别是函数y=x2-ax+0.5a(a>0,0≤x≤1)的最小值和最大值,
(1)求m(a),M(a);
(2)求最值m(a),M(a)的最大值或最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知[x]表示不超过实数x的最大整数(x∈R),如:[-1.3]=-2,[0.8]=0,[3.4]=3.定义{x}=x-[x],则:
(1)设函数f(x)=
x        x≥0
f(x+1)  x<0
,则函数y=f(x)-
1
4
x-
1
4
的不同零点有
 
个;
(2){
2013
2014
}+{
20132
2014
}+{
20133
2014
}+…+{
20132014
2014
}=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在?ABCD中,AB=
2
,BC=3,且∠ABC=45°,以BC为一直角边在BC的下方作Rt△EBC,BE=2.连结BD,过点E作EF平行BD,且EF=BD(点D,F在直线BE的同侧),则?ABCD与△BEF的面积之比为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,△ABC是边长为1的正三角形,且点P在边BC上运动.当
PA
PC
取得最小值时,则cos∠PAB的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1(-1,0)、F2(1,0),P为椭圆C上任意一点,且cos∠F1PF2的最小值为
1
3
.动圆x2+y2=t2
2
<t<
3
)与椭圆C相交于A、B、C、D四点,则矩形ABCD面积的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}满足
an+2
an+1
+
an+1
an
=k(k为常数),则称数列{an}为等比和数列,k称为公比和,已知数列{an}是以3为公比和的等比和数列,其中a1=1,a2=2,则a2013=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于空间中的三条直线,有以下四个条件:
①三条直线两两相交;
②三条直线两两平行;
③三条直线共点;
④两直线相交,第三条平行于其中一条与另个一条相交.
其中使这三条直线共面的充分条件有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点分别为F1,F2,点M(1,2)为双曲线C右支上一点,且F2在以线段MF1为直径的圆的圆周上,则双曲线C的离心率为(  )
A、
2
+1
B、2
2
-1
C、3+2
2
D、
6
+
2
2

查看答案和解析>>

同步练习册答案