精英家教网 > 高中数学 > 题目详情
如图,在?ABCD中,AB=
2
,BC=3,且∠ABC=45°,以BC为一直角边在BC的下方作Rt△EBC,BE=2.连结BD,过点E作EF平行BD,且EF=BD(点D,F在直线BE的同侧),则?ABCD与△BEF的面积之比为
 
考点:三角形的面积公式
专题:解三角形
分析:S平行四边形ABCD=AB•BC•sin45°.在△ABD中,由余弦定理可得BD2=AB2+AD2-2AB•ADcos135°.在△ABD中,由正弦定理可得
AB
sin∠ADB
=
BD
sinA
,可得sin∠ADB=
ABsinA
BD
,于是可得cos∠ADB.因此点D到直线BE的距离h=BDcos∠ADB=4.由于四边形BEFD为平行四边形,可得D与F到直线BE的距离相等.可得△BEF的面积S△BEF=
1
2
BE•h
即可.
解答: 解:S平行四边形ABCD=AB•BC•sin45°=
2
×3×
2
2
=3.
在△ABD中,由余弦定理可得BD2=AB2+AD2-2AB•ADcos135°=(
2
)2+32-2×
2
×3×(-
2
2
)
=17,
∴BD=
17

在△ABD中,由正弦定理可得
AB
sin∠ADB
=
BD
sinA

sin∠ADB=
ABsinA
BD
=
2
×sin135°
17
=
17
17

∴cos∠ADB=
4
17
17

∴点D到直线BE的距离h=BDcos∠ADB=4.
∵四边形BEFD为平行四边形,∴D与F到直线BE的距离相等.
∴△BEF的面积S△BEF=
1
2
BE•h
=
1
2
×2×4
=4.
∴平行四边形ABCD与△BEF的面积之比为3:4.
故答案为:3:4.
点评:本题综合考查了三角形的正弦定理、余弦定理、平行四边形的面积、三角形的面积计算公式,考查了推理能力和计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,已知四棱锥P-ABCD的底面是菱形,∠DAB=
π
3
,AC∩BD=O,PO⊥平面ABCD,E、F分别在棱PC、PA上,CE=
1
3
CP,AF=
1
3
AP,G为PD中点,△PBD是边长为6的等边三角形.
(Ⅰ)求证:B、E、C、F四点共面;
(Ⅱ)求直线EP与平面BECF所成角的正弦值;
(Ⅲ)求平面BECF与平面ABCD所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sinx|sinx-a|-4,若a=1时,f(x)的最小值是
 
;若对任意x∈[0,
π
2
],f(x)≤0恒成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列等式:照此规律,第n个等式可为
 

2=1×2
2+4=2×3
2+4+6=3×4
2+4+6+8=4×5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=5,|
b
|=4,
a
b
=-15,则向量
b
与向量
a
的夹角的余弦值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设非零向量
a
b
满足|
a
|=1,|
a
+2
b
|=1,则|
a
+
b
|+|
b
|的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=
2
,|
b
|=1,且
a
b
的夹角为45°,则
a
b
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

以直线坐标系的原点为极点,x轴的非负半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l:y=x与圆C:ρ=4cosθ相交于A、B两点,则以AB为直径的圆的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图程序框图表示的算法是(  )
A、将a、b、c按从小到大输出
B、将a、b、c按从大到小输出
C、输出a、b、c三数中的最大数
D、输出a、b、c三数中的最小数

查看答案和解析>>

同步练习册答案