精英家教网 > 高中数学 > 题目详情
6.若(x+$\frac{a}{{x}^{2}}$)9的二项展开式中含x6项的系数是36,则实数a=(  )
A.1B.-1C.$\frac{\sqrt{2}}{2}$D.4

分析 写出二项展开式的通项,由x的指数为6求得r值,得到二项展开式中含x6项是第2项,由系数为36求得a值.

解答 解:由${T}_{r+1}={C}_{9}^{r}{x}^{9-r}(\frac{a}{{x}^{2}})^{r}={a}^{r}{C}_{9}^{r}{x}^{9-3r}$,
令9-3r=6,得r=1,
∴(x+$\frac{a}{{x}^{2}}$)9的二项展开式中含x6项是第2项,系数为9a,
由9a=36,得a=4.
故选:D.

点评 本题考查二项式系数的性质,关键是熟记二项展开式的通项,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x+2,x≤0}\\{-{x}^{2},x>0}\end{array}\right.$,若f(a)=5,则a=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知A,B是相互独立事件且P(A)=$\frac{1}{2}$,P(B)=$\frac{2}{3}$,P(A$\overline{B}$)=$\frac{1}{6}$,P($\overline{A}$$\overline{B}$)=$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某学校高三年级有两个文科班,四个理科班,现每个班指定1人,对各班的卫生进行检查,若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是(  )
A.48B.72C.84D.168

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}+1,x≤1}\\{lo{g}_{3}(x+1),x>1}\end{array}\right.$,则f[f(2)]=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知下列数列{an}的前n项和Sn,求数列{an}的通项公式.
(1)Sn=3n-2;
(2)Sn=n2an(n≥2),a1=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.阅读下列程序:

则其运行后输出的结果是5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设平行四边形的两邻边所在直线的方程是x+y=0和3x-y+4=0,且对角线的交点是O(3,3),求另两边所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知a>0,则5-2a-$\frac{8}{a}$的最大值为-3.

查看答案和解析>>

同步练习册答案