11£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðÊÇF1£¬F2ÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{3}$£¬µãMÊÇÍÖÔ²ÉÏÒ»µã£¬Èý½ÇÐÎMF1F2µÄÃæ»ýµÄ×î´óֵΪ$\sqrt{2}$£®
£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£®
£¨2£©Éè²»¾­¹ý½¹µãF1µÄÖ±Ïß?£ºy=kx+mÓëÍÖÔ²½»ÓÚ²»Í¬Á½µãA¡¢B£¬Èç¹ûÖ±ÏßAF1£¬?£¬BF1µÄбÂÊÒÀ´Î³ÉµÈ²îÊýÁУ¬ÇómµÄȡֵ·¶Î§£¿

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃ£º$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{3}}{3}}\\{\frac{1}{2}¡Áb¡Á2c=\sqrt{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃ¼´¿ÉµÃ³öÍÖÔ²µÄ±ê×¼·½³Ì£®
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ö±Ïß·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢¿ÉµÃ£¨2+3k2£©x2+6kmx+3m2-6=0£¬¡÷£¾0£¬¿ÉµÃ3k2-m2+2£¾0£®ÓÉÖ±ÏßAF1£¬?£¬BF1µÄбÂÊÒÀ´Î³ÉµÈ²îÊýÁУ¬¿ÉµÃ$\frac{{y}_{1}}{{x}_{1}+1}+\frac{{y}_{2}}{{x}_{2}+1}$=2k£®°Ñ¸ùÓëϵÊýµÄ¹ØÏµ´úÈë¿ÉµÃ£º$£¨m-k£©£¨\frac{3km}{3{k}^{2}+2}-1£©$=0£®m=k£¨ÉáÈ¥£©£¬»ò$\frac{3km}{3{k}^{2}+2}$=1£®½áºÏ¡÷£¾0£¬¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£º$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{3}}{3}}\\{\frac{1}{2}¡Áb¡Á2c=\sqrt{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃa2=3£¬b2=2£¬¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}$=1£®
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÁªÁ¢$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1}\end{array}\right.$£¬¿ÉµÃ£¨2+3k2£©x2+6kmx+3m2-6=0£¬¡à¡÷£¾0£¬¿ÉµÃ3k2-m2+2£¾0£®
¡àx1+x2=-$\frac{6km}{2+3{k}^{2}}$£¬x1x2=$\frac{3{m}^{2}-6}{2+3{k}^{2}}$£¬¡ßÖ±ÏßAF1£¬?£¬BF1µÄбÂÊÒÀ´Î³ÉµÈ²îÊýÁУ¬¡à$\frac{{y}_{1}}{{x}_{1}+1}+\frac{{y}_{2}}{{x}_{2}+1}$=2k£®
¡à$\frac{£¨k{x}_{1}+m£©£¨{x}_{2}+1£©+£¨k{x}_{2}+m£©£¨{x}_{1}+1£©}{£¨{x}_{1}+1£©£¨{x}_{2}+1£©}$=2k£¬$\frac{2k{x}_{1}{x}_{2}+£¨k+m£©£¨{x}_{1}+{x}_{2}£©+2m}{{x}_{1}{x}_{2}+£¨{x}_{1}+{x}_{2}£©+1}$=2k£¬
°Ñ¸ùÓëϵÊýµÄ¹ØÏµ´úÈë¿ÉµÃ£º$£¨m-k£©£¨\frac{3km}{3{k}^{2}+2}-1£©$=0£®
¡àm=k£¨ÉáÈ¥£©£¬»ò$\frac{3km}{3{k}^{2}+2}$=1£®»¯Îª£ºm=$\frac{3{k}^{2}+2}{3k}$=k+$\frac{2}{3k}$£¬ÓÖ3k2-m2+2£¾0£®¡àk2$£¾\frac{1}{3}$£¬
¡àk$£¾\frac{\sqrt{3}}{3}$ʱ£¬m¡Ý$\frac{2\sqrt{6}}{3}$£¬µ±ÇÒ½öµ±k=$\frac{\sqrt{6}}{3}$ʱȡµÈºÅ£®
k$£¼-\frac{\sqrt{3}}{3}$ʱ£¬m¡Ü-$\frac{2\sqrt{6}}{3}$£¬µ±ÇÒ½öµ±k=-$\frac{\sqrt{6}}{3}$ʱȡµÈºÅ£®
×ÛÉÏÉÏÊö¿ÉµÃ£ºm¡Ê$£¨-¡Þ£¬-\frac{2\sqrt{6}}{3}]$¡È$[\frac{2\sqrt{6}}{3}£¬+¡Þ£©$£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ¡¢²»µÈʽµÄ½â·¨¡¢µÈ²îÊýÁеÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÔÚÈý½ÇÐÎABCÖУ¬ÒÑÖªAB=2£¬AC=3£¬DÊÇBC±ßÉÏ¿¿½üBµãµÄËĵȷֵ㣬µãEÊÇAC±ßÉÏ¿¿½üµãAµãµÄÈýµÈ·Öµã£¬Ôò$\overrightarrow{AD}$•$\overrightarrow{BE}$=£¨¡¡¡¡£©
A£®-$\frac{9}{4}$B£®$\frac{4\sqrt{2}}{9}$C£®-$\frac{7}{9}$D£®$\frac{7}{9}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=lnx£¬x1£¬x2¡Ê£¨0£¬$\frac{1}{e}$£©£¬ÇÒx1£¼x2£¬ÔòÏÂÁнáÂÛÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®£¨x1-x2£©[f£¨x1£©-f£¨x2£©]£¼0B£®f£¨$\frac{{x}_{1}+{x}_{2}}{2}$£©£¼f£¨$\frac{f£¨{x}_{1}£©+f£¨{x}_{2}£©}{2}$£©
C£®x1f£¨x2£©£¾x2f£¨x1£©D£®x2f£¨x2£©£¾x1f£¨x1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Ö±Ïßy=kxÓëË«ÇúÏßx2-$\frac{{y}^{2}}{3}$=1ÎÞ¹«¹²µã£¬ÔòkµÄȡֵ·¶Î§Îªk¡Ü-$\sqrt{3}$»òk¡Ý$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=log${\;}_{\frac{1}{2}}$£¨x+a£©£¬g£¨x£©=x2+4x-2£¬º¯Êýh£¨x£©=$\left\{\begin{array}{l}{f£¨x£©£¬f£¨x£©¡Ýg£¨x£©}\\{g£¨x£©£¬f£¨x£©£¼g£¨x£©}\end{array}\right.$£¬Èôº¯Êýh£¨x£©µÄ×îСֵΪ-2£¬Ôòa=£¨¡¡¡¡£©
A£®0B£®2C£®4D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªx£¾0£¬y£¾0£¬ÇÒx+2y=2£¬Ôò2x+4yµÄ×îСֵΪ£¨¡¡¡¡£©
A£®2B£®4C£®6D£®8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Ä³´åׯÄâÐÞ½¨Ò»¸öÎ޸ǵÄÔ²ÖùÐÎÐîË®³Ø£¨²»¼Æºñ¶È£©£¬Éè¸ÃÐîË®³ØµÄµ×Ãæ°ë¾¶ÎªrÃ×£¬¸ßΪhÃ×£¬Ìå»ýΪVÁ¢·½Ã×£®¼ÙÉ轨Ôì³É±¾½öÓë±íÃæ»ýÓйأ¬²àÃæµÄ½¨Ôì³É±¾Îª50Ôª/ƽ·½Ã×£¬µ×ÃæµÄ½¨Ôì³É±¾Îª100Ôª/ƽ·½Ã×£®¸ÃÐîË®³Ø×ܽ¨Ôì³É±¾Îª10800¦ÐÔª£®£¨¦ÐΪԲÖÜÂÊ£©
£¨¢ñ£©½«V±íʾΪrµÄº¯ÊýV£¨r£©£¬²¢Çó¸Ãº¯ÊýµÄ¶¨ÒåÓò£»
£¨¢ò£©ÌÖÂÛº¯ÊýV£¨r£©µÄµ¥µ÷ÐÔ£¬²¢È·¶¨rºÍhΪºÎֵʱ¸ÃÐîË®³ØµÄÌå»ý×î´ó£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖªcos£¨75¡ã+¦Á£©=$\frac{1}{2}$£¬¦ÁÊǵÚÈýÏóÏ޵Ľǣ¬Ôòcos£¨105¡ã-¦Á£©+sin£¨¦Á-105¡ã£©µÄֵΪ-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®sin£¨2x-$\frac{¦Ð}{2}}$£©+2cosxµÄ×î´óÖµÊÇ£¨¡¡¡¡£©
A£®-3B£®-$\frac{3}{2}$C£®$\frac{3}{2}$D£®3

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸