·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃ£º$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{3}}{3}}\\{\frac{1}{2}¡Áb¡Á2c=\sqrt{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃ¼´¿ÉµÃ³öÍÖÔ²µÄ±ê×¼·½³Ì£®
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ö±Ïß·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢¿ÉµÃ£¨2+3k2£©x2+6kmx+3m2-6=0£¬¡÷£¾0£¬¿ÉµÃ3k2-m2+2£¾0£®ÓÉÖ±ÏßAF1£¬?£¬BF1µÄбÂÊÒÀ´Î³ÉµÈ²îÊýÁУ¬¿ÉµÃ$\frac{{y}_{1}}{{x}_{1}+1}+\frac{{y}_{2}}{{x}_{2}+1}$=2k£®°Ñ¸ùÓëϵÊýµÄ¹ØÏµ´úÈë¿ÉµÃ£º$£¨m-k£©£¨\frac{3km}{3{k}^{2}+2}-1£©$=0£®m=k£¨ÉáÈ¥£©£¬»ò$\frac{3km}{3{k}^{2}+2}$=1£®½áºÏ¡÷£¾0£¬¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£º$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{3}}{3}}\\{\frac{1}{2}¡Áb¡Á2c=\sqrt{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃa2=3£¬b2=2£¬¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}$=1£®
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÁªÁ¢$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1}\end{array}\right.$£¬¿ÉµÃ£¨2+3k2£©x2+6kmx+3m2-6=0£¬¡à¡÷£¾0£¬¿ÉµÃ3k2-m2+2£¾0£®
¡àx1+x2=-$\frac{6km}{2+3{k}^{2}}$£¬x1x2=$\frac{3{m}^{2}-6}{2+3{k}^{2}}$£¬¡ßÖ±ÏßAF1£¬?£¬BF1µÄбÂÊÒÀ´Î³ÉµÈ²îÊýÁУ¬¡à$\frac{{y}_{1}}{{x}_{1}+1}+\frac{{y}_{2}}{{x}_{2}+1}$=2k£®
¡à$\frac{£¨k{x}_{1}+m£©£¨{x}_{2}+1£©+£¨k{x}_{2}+m£©£¨{x}_{1}+1£©}{£¨{x}_{1}+1£©£¨{x}_{2}+1£©}$=2k£¬$\frac{2k{x}_{1}{x}_{2}+£¨k+m£©£¨{x}_{1}+{x}_{2}£©+2m}{{x}_{1}{x}_{2}+£¨{x}_{1}+{x}_{2}£©+1}$=2k£¬
°Ñ¸ùÓëϵÊýµÄ¹ØÏµ´úÈë¿ÉµÃ£º$£¨m-k£©£¨\frac{3km}{3{k}^{2}+2}-1£©$=0£®
¡àm=k£¨ÉáÈ¥£©£¬»ò$\frac{3km}{3{k}^{2}+2}$=1£®»¯Îª£ºm=$\frac{3{k}^{2}+2}{3k}$=k+$\frac{2}{3k}$£¬ÓÖ3k2-m2+2£¾0£®¡àk2$£¾\frac{1}{3}$£¬
¡àk$£¾\frac{\sqrt{3}}{3}$ʱ£¬m¡Ý$\frac{2\sqrt{6}}{3}$£¬µ±ÇÒ½öµ±k=$\frac{\sqrt{6}}{3}$ʱȡµÈºÅ£®
k$£¼-\frac{\sqrt{3}}{3}$ʱ£¬m¡Ü-$\frac{2\sqrt{6}}{3}$£¬µ±ÇÒ½öµ±k=-$\frac{\sqrt{6}}{3}$ʱȡµÈºÅ£®
×ÛÉÏÉÏÊö¿ÉµÃ£ºm¡Ê$£¨-¡Þ£¬-\frac{2\sqrt{6}}{3}]$¡È$[\frac{2\sqrt{6}}{3}£¬+¡Þ£©$£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ¡¢²»µÈʽµÄ½â·¨¡¢µÈ²îÊýÁеÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -$\frac{9}{4}$ | B£® | $\frac{4\sqrt{2}}{9}$ | C£® | -$\frac{7}{9}$ | D£® | $\frac{7}{9}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨x1-x2£©[f£¨x1£©-f£¨x2£©]£¼0 | B£® | f£¨$\frac{{x}_{1}+{x}_{2}}{2}$£©£¼f£¨$\frac{f£¨{x}_{1}£©+f£¨{x}_{2}£©}{2}$£© | ||
| C£® | x1f£¨x2£©£¾x2f£¨x1£© | D£® | x2f£¨x2£©£¾x1f£¨x1£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 0 | B£® | 2 | C£® | 4 | D£® | 6 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2 | B£® | 4 | C£® | 6 | D£® | 8 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -3 | B£® | -$\frac{3}{2}$ | C£® | $\frac{3}{2}$ | D£® | 3 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com