精英家教网 > 高中数学 > 题目详情

(函数
(1)若是偶函数,求实数的值;
(2)当时,求在区间上的值域.

(1);(2)值域为

解析试题分析:(1)是偶函数,即的对称轴为y轴,从而可求得实数的值;(2)把代入,用换元法设,则,从而可求在区间上的函数的值域.
试题解析:(1);             (4分)
(2)当时,令,            (8分)
的值域为.               (14分)
考点:函数的性质、函数定义域及值域的求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知二次函数f(x)=x2+(2a-1)x+1-2a.
(1)判断命题“对于任意的a∈R(R为实数集),方程f(x)=1必有实数根”的真假,并写出判断过程.
(2)若y=f(x)在区间(-1,0)及(0,)内各有一个零点,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).
(1)将V表示成r的函数V(r),并求该函数的定义域;
(2)讨论函数V(r)的单调性,并确定rh为何值时该蓄水池的体积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市对排污水进行综合治理,征收污水处理费,系统对各厂一个月内排出的污水量吨收取的污水处理费元,运行程序如下所示:请写出y与m的函数关系,并求排放污水150吨的污水处理费用.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某跨国饮料公司对全世界所有人均GDP(即人均纯收入)在0.5—8千美元的地区销售,该公司M饮料的销售情况的调查中发现:人均GDP处在中等的地区对该饮料的销售量最多,然后向两边递减.
(1)下列几个模拟函数中(x表示人均GDP,单位:千美元;y表示年人均M饮料的销量,单位:升),用哪个来描述人均,饮料销量与地区的人均GDP的关系更合适?说明理由.

A. B. C. D.
(2)若人均GDP为1千美元时,年人均M饮料的销量为2升;人均GDP为4千美元时,年人均M饮料的销量为5升;把你所选的模拟函数求出来.;
(3)因为M饮料在N国被检测出杀虫剂的含量超标,受此事件影响,M饮料在人均GDP不高于3千美元的地区销量下降5%,不低于6千美元的地区销量下降5%,其他地区的销量下降10%,根据(2)所求出的模拟函数,求在各个地区中,年人均M饮料的销量最多为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米,圆心角为(弧度).

(1)求关于的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,求关于的函数关系式,并求出为何值时,取得最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为集合.
(1)若函数的定义域也为集合的值域为,求
(2)已知,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的自变量的取值区间为A,若其值域区间也为A,则称A为的保值区间.
(Ⅰ)求函数形如的保值区间;
(Ⅱ)函数是否存在形如的保值区间?若存在,求出实数的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某厂家准备在2013年12月份举行促销活动,依以往的数据分析,经测算,该产品的年销售量万件(假设该厂生产的产品全部销售),与年促销费用万元近似满足,如果不促销,该产品的年销售量只能是1万件.已知2013年生产该产品的固定投入10万元,每生产1万件该产品需要再投入16万元.厂家将每件产品的销售价格规定为每件产品成本的1.5倍.(产品成本包括固定投入和再投入两部分资金).
(1)将2013年该产品的年利润万元表示为年促销费用万元的函数;
(2)该厂家2013年的年促销费用投入为多少万元时,该厂家的年利润最大?并求出年最大利润.

查看答案和解析>>

同步练习册答案