精英家教网 > 高中数学 > 题目详情

某厂家准备在2013年12月份举行促销活动,依以往的数据分析,经测算,该产品的年销售量万件(假设该厂生产的产品全部销售),与年促销费用万元近似满足,如果不促销,该产品的年销售量只能是1万件.已知2013年生产该产品的固定投入10万元,每生产1万件该产品需要再投入16万元.厂家将每件产品的销售价格规定为每件产品成本的1.5倍.(产品成本包括固定投入和再投入两部分资金).
(1)将2013年该产品的年利润万元表示为年促销费用万元的函数;
(2)该厂家2013年的年促销费用投入为多少万元时,该厂家的年利润最大?并求出年最大利润.

(1)(2)3,2,1万

解析试题分析:(1)由题意可知当m=0时,x=1满足,即可得出k值,从而得出每件产品的销售价格,从而得出2013年的利润的表达式即可;
(2)对于(1)中求得的解析式,根据其中两项之积为定值结合利用基本不等式此函数的最大值及相应的x值,从而解决该厂家2010年的促销费用投入多少万元时,厂家的利润最大.
试题解析:(1)由       3分
每件产品的销售价格为1.5×(元),                                       .4分
∴2010年的利润y=x•(1.5×)-(8+16x+m)                      6
=4+8x-m=4+8(3?)-m=-[+(m+1)]+29(m≥0).
           7分
(2),当且仅当 ,即年促销费用投入为3万元,该厂家的年利润最大,最大利润为21万元。         13分
考点:1.函数模型的选择与应用;2.基本不等式的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(函数
(1)若是偶函数,求实数的值;
(2)当时,求在区间上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
⑴当时,若函数存在零点,求实数的取值范围并讨论零点个数;
⑵当时,若对任意的,总存在,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点,点在曲线:上.
(1)若点在第一象限内,且,求点的坐标;
(2)求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了在夏季降温和冬季供暖时减少能源消耗,房屋的屋顶和外墙需要建造隔热层,某栋建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用(单位:万元)与隔热层厚度(单位:)满足关系:
若不建隔热层,每年能源消耗费用为8万元。设为隔热层建造费用与20年的能源消耗费用之和。
(Ⅰ)求的值及的表达式;
(Ⅱ)隔热层修建多厚时,总费用最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了降低能源损耗,某体育馆的外墙需要建造隔热层.体育馆要建造可使用年的隔热层,每厘米厚的隔热层建造成本为万元.该建筑物每年的能源消耗费用(单位:万元)与隔热层厚度(单位:)满足关系:为常数),若不建隔热层,每年能源消耗费用为万元.设为隔热层建造费用与年的能源消耗费用之和.
(1)求的值及的表达式;
(2)隔热层修建多厚时,总费用达到最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知(a是常数,a∈R)
(Ⅰ)当a=1时求不等式的解集;
(Ⅱ)如果函数恰有两个不同的零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

 
(Ⅰ)当,解不等式
(Ⅱ)当时,若,使得不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

岛A观察站发现在其东南方向有一艘可疑船只,正以每小时10海里的速度向东南方向航行,观察站即刻通知在岛A正南方向B处巡航的海监船前往检查.接到通知后,海监船测得可疑船只在其北偏东75°方向且相距10海里的C处,随即以每小时10 海里的速度前往拦截.
(I)问:海监船接到通知时,距离岛A多少海里?
(II)假设海监船在D处恰好追上可疑船只,求它的航行方向及其航行的时间.

查看答案和解析>>

同步练习册答案