精英家教网 > 高中数学 > 题目详情
12.若函数f(x)是定义在R上的奇函数,则函数F(x)=|f(x)|+f(|x|)的图象一定关于(  )
A.x轴对称B.y轴对称C.原点对称D.直线y=x对称

分析 根据函数奇偶性的定义和性质进行判断即可.

解答 解:∵函数f(x)是定义在R上的奇函数,
∴F(-x)=|f(-x)|+f(|-x|)=|-f(x)|+f(|x|)=|f(x)|+f(|x|)=F(x),
即函数F(x)是偶函数,则图象关于y轴对称,
故选:B

点评 本题主要考查函数图象的判断,根据函数奇偶性的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知P={x|x2-8x-20≤0},S={x|1-m≤x≤1+m},
(Ⅰ)是否存在实数m,使集合P=S,若存在,求出m的值,否则说明理由;
(Ⅱ)是否存在实数m,使x∈P是x∈S的必要不充分条件,若存在,求出m的取值范围,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.将函数$f(x)=2sin(ωx+\frac{π}{3})(ω>0)$的图象向右平移$\frac{π}{3ω}$个单位,得到函数y=g(x)的图象,若y=g(x)在$[0,\frac{π}{4}]$上为增函数,则ω的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(m,2),$\overrightarrow{c}$=(3,4),且($\overrightarrow{a}$-3$\overrightarrow{b}$)⊥$\overrightarrow{c}$.
(Ⅰ)求实数m的值;
(Ⅱ)求向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.计算:log225•log52$\sqrt{2}$=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设x,y∈R,集合A={(x,y)|ax+by+1=0},B={(x,y)|x2+y2=1},且A∩B是一个单元素集合,若对所有的(a,b)∈{(a,b)|a<0,b<0},则集合C={(x,y)|(x-a)2+(y-b)2≤1}所表示的图形的面积等于2π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知Sn是等比数列{an}的前n项的和,a2,a8,a5成等差数列.
(1)求等比数列{an}的公比q;
(2)判断S3,S9,S6是否成等差数列?若成等差数列,请给出证明;若不成等差数列,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a为实数.
命题p:根式$\sqrt{1-a}$有意义;
命题q:曲线y=x2+2(a-1)x+1与x轴交于不同的两点.
(Ⅰ)如果“¬p”为真命题,求a的取值范围;
(Ⅱ)如果“p∨q”为真命题,“p∧q”为假命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在斜三棱柱ABCD-A1B1C1中,侧面ACC1A1与侧面CBB1C1都是菱形,∠B1C1C=∠C1CA=60°,AC=2,其中M,N分别是AB,B1C1的中点,
(1)求证:MN∥平面AC1
(2)若AB1=$\sqrt{6}$,求二面角C-AB1-B的余弦值.

查看答案和解析>>

同步练习册答案