精英家教网 > 高中数学 > 题目详情
8.函数f(x)=(1+ax2)ex(a≠0)在R上有两个极值点,则实数a的取值范围是(-∞,0)∪(1,+∞).

分析 求函数的导数,利用函数取值极值转化为f′(x)=0有两个不同的根进行求解即可.

解答 解:函数的导数f′(x)=2axex+(1+ax2)ex=(1+2ax+ax2)ex
若f(x)=(1+ax2)ex(a≠0)在R上有两个极值点,
则f′(x)=(1+2ax+ax2)ex,在R上不是单调函数,
即即f′(x)=(1+2ax+ax2)ex=0,由两个不等的实根,
即1+2ax+ax2=0,有两个不等的实根,
则判别式△=4a2-4a>0,
即a>1或a<0,
故答案为:(-∞,0)∪(1,+∞).

点评 本题主要考查导数的应用,根据函数极值和导数之间的关系转化为f′(x)=0有两个不同的实根是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.-30°+k•360°(k∈Z)表示(  )角.
A.第一象限B.第三象限C.第四象限D.界限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设x,y满足约束条件$\left\{\begin{array}{l}{x+2y≥2}\\{2x+y≤4}\\{4x-y≥-1}\end{array}\right.$,则函数z=$\frac{x-y}{x+y+2}$的取值范围是[-$\frac{5}{11}$,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设等差数列{an}的前n项和为Sn,且S5=4S3,a3n=3an+2
(1)求数列{an}的通项公式;
(2)设数列{bn}满足22n-1bn=an-1,其前n项和为Tn,求Tn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=2x3-3x2+1,对于区间$[\frac{1}{2},2]$上的任意x1,x2,|f(x1)-f(x2)|的最大值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow a=(1,2),\overrightarrow b=(x,-1)$,且$\overrightarrow a⊥\overrightarrow b$,则$|{\overrightarrow a-2\overrightarrow b}|$=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.现有甲、乙、丙、丁4个学生课余参加学校社团文学社与街舞社的活动,每人参加且只能参加一个社团的活动,且参加每个社团是等可能的.
(1)求文学社和街舞社都至少有1人参加的概率;
(2)求甲、乙同在一个社团,且丙、丁不同在一个社团的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知曲线E上的任意点到点F(1,0)的距离比它到直线x=-2的距离小1.
(Ⅰ)求曲线E的方程;
(Ⅱ)点D的坐标为(2,0),若P为曲线E上的动点,求$\overrightarrow{PD}$•$\overrightarrow{PF}$的最小值;
(Ⅲ)设点A为y轴上异于原点的任意一点,过点A作曲线E的切线l,直线x=3分别与直线l及x轴交于点M,N,以MN为直径作圆C,过点A作圆C的切线,切点为B,试探究:当点A在y轴上运动(点A与原点不重合)时,线段AB的长度是否发生变化?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知下列三个命题:
①若两组数据的平均数相等,则它们的标准差也相等;
②在区间[-1,5]上随机选取一个数x,则x≥3的概率为$\frac{2}{3}$;
③直线x+y+1=0与圆${x^2}+{y^2}=\frac{1}{2}$相切;
其中真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案