精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=x2+bx+c满足f(0)=0,且f(-1-x)=f(x),令g(x)=f(x)-|x-1|.
(1)求函数f(x)的表达式;
(2)求函数g(x)的最小值.

分析 (1)利用已知条件求出b,c即可推出函数的解析式.
(2)g(x)=f(x)-|x-1|表示为分段函数的形式,然后求解最小值.

解答 (1)解:∵f(0)=0,∴c=0.…(2分)
∵对于任意x∈R都有,f(-1-x)=f(x)
∴函数f(x)的对称轴为$x=-\frac{1}{2}$,即b=1.…(4分)
∴f(x)=x2+x.----(6分)
(2)$g(x)=\left\{{\begin{array}{l}{{x^2}+1(x≥1)}\\{{x^2}+2x-1(x<1)}\end{array}}\right.$-------(8分)
当x≥1时  g(x)=x2+1 函数的最小值为2
当x<1时  g(x)=x2+2x-1 函数的最小值为1-------(11分)
所以函数的最小值为1-------------(12分)

点评 本题考查二次函数的性质,函数的解析式的求法,分段函数的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设全集U=R,A={x|-2<x<3},B={x|-3≤x≤2}
(1)求A∩B
(2)求(∁UA)∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.计算sin$\frac{7}{3}$πcos(-$\frac{23}{6}$π)+tan(-$\frac{11}{4}$π)cos$\frac{13}{3}$π=$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,已知∠BOC在平面α内,OA是平面α的斜线,且∠AOB=∠AOC=60°,OA=OB=OC=a,BC=$\sqrt{2}$a,求OA和平面α所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若点P(2,-1)(直角坐标系下的坐标)为曲线ρ2-2ρcosθ-24=0(极坐标系下的方程)的弦的中点,则该弦所在直线的直角坐标方程为x-y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2+2x
(1)若x∈[-2,a],a>-2时,求f(x)的值域;
(2)若存在实数t,当x∈[1,m],m>1时,f(x+t)≤3x恒成立,求实数m的取值范围.
(提示:当x∈[a,b]时f(x)≤k恒成立,则f(x)max≤k;存在x∈[a,b]使得f(x)≤k,则f(x)min≤k)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆x2+y2-2x-2y+1=0,直线l:y=kx,直线l与圆C交于A、B两点,点M的坐标为(0,b),且满足$\overrightarrow{MA}$⊥$\overrightarrow{MB}$.
(1)当b=1时,求k的值;
(2)当b∈(1,$\frac{3}{2}$)时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在平面直角坐标系xOy中,角α的顶点是坐标原点,始边为x轴的正半轴,终边与单位圆O交于点A(x1,y1),α∈($\frac{π}{4}$,$\frac{π}{2}$).将角α终边绕原点按逆时针方向旋转$\frac{π}{4}$,交单位圆于点B(x2,y2).过A,B作x轴的垂线,垂足分别为C,D,记△AOC及△BOD的面积分别为S1,S2,且S1=$\frac{4}{3}$S2,则tanα的值等于(  )
A.1B.2C.$\frac{1}{2}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+ax+1,x≥1}\\{a{x}^{2}+x+1,x<1}\end{array}\right.$在R上是单调增函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案