精英家教网 > 高中数学 > 题目详情
7.(x+1)(x2-$\frac{2}{x^3}$)5的展开式中的常数项为(  )
A.80B.-80?C.40D.-40

分析 利用二项式定理的通项公式即可得出.

解答 解:(x2-$\frac{2}{x^3}$)5的展开式中的通项公式:Tr+1=${∁}_{5}^{r}$$({x}^{2})^{5-r}(-\frac{2}{{x}^{3}})^{r}$=(-2)r${∁}_{5}^{r}$x10-5r
令10-5r=0,解得r=2.
10-2r=-1,无解,舍去.
∴(x+1)(x2-$\frac{2}{x^3}$)5的展开式中的常数项=$(-2)^{2}{∁}_{5}^{2}$=40.
故选:C.

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若复数z满足z(1+i)=2(sin$\frac{π}{2}$+icos$\frac{π}{2}}$),其中i为虚数单位,则z=(  )
A.2B.iC.1-iD.l+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知方程组$\left\{\begin{array}{l}{x-2y=z-2u}\\{2yz=ux}\end{array}\right.$,对此方程组的每一组正实数解{x,y,z,u},其中z≥y,都存在正实数M,且满足M≤$\frac{z}{y}$,则M的最大值是6+4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知i为虚数单位,复数z=2i+$\frac{2}{1+i}$,则复数z的模为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知等差数列{an}的各项均为正数,a1=1,且a3,a4+$\frac{5}{2}$,a11成等比数列.若p-q=10,则ap-aq=15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若i为虚数单位,图中网格纸的小正方形的边长是1,复平面内点Z表示复数z,则复数$\frac{z}{1-2i}$的共轭复数的虚部是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|x2-x-2≤0},集合B={x|x<a},则a=2是A⊆B的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.定义在R上的函数f(x)是减函数,且函数y=f(x)的图象关于原点中心对称,若s,t满足不等式f(s2-2s)≤-f(2t-t2),其中t=k•s.则当2<s<4时,k的取值范围是(  )
A.[-$\frac{1}{2}$,1]B.(-∞,0)∪[1,+∞)C.(-$\frac{1}{2}$,1]D.(-∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=f(x)的图象沿x轴向左平移$\frac{π}{6}$个单位得到函数g(x)=$\sqrt{3}$sin2x+cos2x的图象,则函数y=f(x)的一条对称轴为(  )
A.x=-$\frac{π}{4}$B.x=-$\frac{π}{3}$C.x=$\frac{π}{4}$D.x=$\frac{π}{3}$

查看答案和解析>>

同步练习册答案