精英家教网 > 高中数学 > 题目详情
6.在△ABC中,角A、B、C所对的边分别为a、b、c,且a=2,cosB=$\frac{3}{5}$.
(1)若b=4,求sinA的值;
(2)若△ABC的面积S△ABC=4,求b、c的值.

分析 (1)由cosB=$\frac{3}{5}$>0,且0<B<π,可得sinB=$\sqrt{1-co{s}^{2}B}$.再利用正弦定理即可得出.
(2)由S△ABC=$\frac{1}{2}$acsinB=,解得c,再利用余弦定理即可得出.

解答 解:(1)∵cosB=$\frac{3}{5}$>0,且0<B<π,∴sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{4}{5}$.
由正弦定理得$\frac{a}{sinA}$=$\frac{b}{sinB}$,∴sinA=$\frac{asinB}{b}$=$\frac{2}{4}×\frac{4}{5}$=$\frac{2}{5}$.
(2)∵S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}×2c$×$\frac{4}{5}$=4,∴c=5.
由余弦定理得b2=a2+c2-2accosB=22+52-2×2×5×$\frac{3}{5}$=17,∴b=$\sqrt{17}$.

点评 本题考查了三角形面积计算公式、正弦定理余弦定理、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知tanx=2,
(1)求$\frac{2}{3}{sin^2}x+\frac{1}{4}{cos^2}x$的值.
(2)求$\frac{cosx+sinx}{cosx-sinx}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A,B,C的对边分别为a,b,c,$\frac{cosC}{sinC}$=$\frac{cosA+cosB}{sinA+sinB}$.
(1)求∠C的大小;
(2)若c=2,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知椭圆$\frac{x^2}{25}+\frac{y^2}{18}=1$的左右焦点为F1,F2,点P在椭圆上,且|PF1|=6,则∠F1PF2=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)若角θ的终边过P(-4t,3t)(t>0),求2sinθ+cosθ的值.
(2)已知角α的终边上一点P的坐标为($x,-\sqrt{3}$)(x≠0),且$cosα=\frac{{\sqrt{2}}}{4}x$,求sinα和tanα

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=3x2+5x-2,求f(3)、f(-$\sqrt{2}$)、f(a)、f(a+1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某几何体的三视图如图所示,则该几何体的体积为(  )
A.8B.$6\sqrt{2}$C.$4\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=x2-8lnx,若对?x1,x2∈(a,a+1)均满足$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$,则a的取值范围为0≤a≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF,∠BCF=∠CEF=90°.AD=$\sqrt{3}$,EF=2
(1)求证:AE∥平面DCF;
(2)当AB的长为何值时,二面角A-EF-C的大小为60°.

查看答案和解析>>

同步练习册答案