精英家教网 > 高中数学 > 题目详情
16.已知tanx=2,
(1)求$\frac{2}{3}{sin^2}x+\frac{1}{4}{cos^2}x$的值.
(2)求$\frac{cosx+sinx}{cosx-sinx}$的值.

分析 (1)将所求的式子的分子、分母同时除以cos2x,化为关于正切函数的式子,把tanx=2代入可得结果.
(2)将所求的式子的分子、分母同时除以cosx,化为关于正切函数的式子,把tanx=2代入可得结果.

解答 解:(1)$\frac{2}{3}{sin^2}x+\frac{1}{4}{cos^2}x=\frac{{\frac{2}{3}{{sin}^2}x+\frac{1}{4}{{cos}^2}x}}{{{{sin}^2}x+{{cos}^2}x}}=\frac{{\frac{2}{3}{{tan}^2}x+\frac{1}{4}}}{{{{tan}^2}x+1}}=\frac{7}{12}$;
(2)$\frac{cosx+sinx}{cosx-sinx}=\frac{1+tanx}{1-tanx}=\frac{1+2}{1-2}=-3$.

点评 本题考查了同角的三角函数的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.设全集I={a,b,c,d,e},集合M={a,b,c},N={b,d,e},那么(∁IM)∩N为{d,e}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.美索不达米亚平原是人类文明的发祥地之一.美索不达米亚人善于计算,他们创造了优良的计数系统,其中开平方算法是最具有代表性的.程序框图如图所示,若输入a,n,ξ的值分别为8,2,0.5,(每次运算都精确到小数点后两位)则输出结果为(  )
A.2.81B.2.82C.2.83D.2.84

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.定义在R上的函数f(x)满足f(x)+f′(x)>2,ef(1)=2e+4,则不等式f(x)>$\frac{4}{{e}^{x}}$+2(其中e为自然对数的底数)的解集为(  )
A.(1,+∞)B.(-∞,0)∪(1,+∞)C.(-∞,0)∪(0,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$4\sqrt{3}$B.$5\sqrt{3}$C.$6\sqrt{3}$D.$8\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,∠BAC=90°,AD是BC边上的高,则相似三角形共有(  )
A.0对B.1对C.2对D.3对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$α=\frac{5}{6}π$,则点P(cosα,sinα)所在象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={x|x2-2x≤0},B={x|x≤a},若A⊆B,则实数a的取值范围是(  )
A.a≥2B.a>2C.a<0D.a≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,角A、B、C所对的边分别为a、b、c,且a=2,cosB=$\frac{3}{5}$.
(1)若b=4,求sinA的值;
(2)若△ABC的面积S△ABC=4,求b、c的值.

查看答案和解析>>

同步练习册答案