精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到过疫区。B肯定是受A感染的。对于C,因为难以断定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是。同样也假定D受A、B和C感染的概率都是。在这种假定之下,B、C、D中直接受A感染的人数X就是一个随机变量。写出X的分布列(不要求写出计算过程),并求X的均值(即数学期望)。

随机变量X的分布列是
X
1
2
3
P



本小题主要考查古典概型及其概率计算,考查取有限个值的离散型随机变量及其分布列和均值的概念,通过设置密切贴近现实生活的情境,考查概率思想的应用意识和创新意识。体现数学的科学价值。
随机变量X的分布列是
X
1
2
3
P



X的均值为
附:X的分布列的一种求法
共有如下6种不同的可能情形,每种情形发生的概率都是






A—B—C—D
A—B—C
└D
A—B—C
└D
A—B—D
└C
A—C—D
└B

在情形①和②之下,A直接感染了一个人;在情形③、④、⑤之下,A直接感染了两个人;在情形⑥之下,A直接感染了三个人。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

将一枚骰子(形状为正方体,六个面上分别标有数字1,2,3,4,5,6的玩具)先后抛掷两次,骰子向上的点数依次为
(1)求的概率;
(2)求的概率P
(3)试将右侧求⑵中概率P的伪代码补充完整.             

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在研究某新措施对“非典”的防治效果问题时,得到如下列联表:
 
存活数
死亡数
合计
新措施
132
18
150
对照
114
36
150
合计
246
54
300
由表中数据可得,故我们由此认为 “新措施对防治非典有效” 的把握为(  )
A.0            B.        C.       D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13)
在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰,已知某选手能正确回答第一、二、三、四轮问题的概率分别为,且各轮问题能否正确回答互不影响。
(I)求该选手进入第三轮才被淘汰的概率;
(II)求该选手至多进入第三轮考核的概率;
(III)该选手在选拔过程中回答过的问题的个数记为,求随机变量的分布列和期望。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分,(Ⅰ)小问8分,(Ⅱ)小问5分.)
在每道单项选择题给出的4个备选答案中,只有一个是正确的.若对4道选择题中的每一道都任意选定一个答案,求这4道题中:
(Ⅰ)恰有两道题答对的概率;
(Ⅱ)至少答对一道题的概率。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在“灿烂阳光小歌手PK赛”10进6的比赛中,有男歌手和女歌手各3人进入前6名,现从中任选2名歌手去参加2010年的元旦联欢会的演出,求:
(1)  恰有一名参赛歌手是男歌手的概率;
(2)  至少有一名参赛歌手是男歌手的概率;
(3) 至多有一名参赛歌手是男歌手的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某市为响应国家节能减排,建设资源节约型社会的号召,唤起人们从自己身边的小事做起,开展了以“再小的力量也是一种支持”为主题的宣传教育活动,其中有两则公益广告:
(一)80部手机,一年就会增加一吨二氧化碳的排放。……
(二)人们在享受汽车带来的便捷与舒适的同时,却不得不呼吸汽车排放的尾气。……


 
       活动组织者为了解市民对这两则广告的宣传效果,随机对10~60岁的人群抽样了n人,统计结果如下图表:

 
(I)分别写出n,a,c,d的值;
(II)若以表中的频率近似看作各年龄组正确回答广告内容的概率,规定正确回答广告一的内容得20元,广告二的内容得30元。组织者随机请一家庭的两成员(大人45岁,孩子17岁)回答两广告内容,求该家庭获得奖金的期望(各人之间,两广告之间,对能否正确回答,均无影响。)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

有一电路如图,共有1号、2号、3号、4号、5号、6号六个开关,若每个开关闭合的概率都是,且互相独立,求电路被接通的概率?
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为抗击金融风暴,某工贸系统决定对所属企业给予低息贷款的扶持.该系统先根据相关评分标准对各个企业进行了评估,并依据评估得分将这些企业分别评定为优秀、良好、合格、不合格4个等级,然后根据评估等级分配相应的低息贷款金额,其评估标准和贷款金额如下表:
评估得分
[50,60)
[60,70)
[70,80)
[80,90]
评定类型
不合格
合格
良好
优秀
贷款金额(万元)
0
200
400
800
为了更好地掌控贷款总额,该系统随机抽查了所属部分企业的评估分数,得其频率分布直方图如下:
(Ⅰ)估计该系统所属企业评估得分的中位数;
(Ⅱ)该系统要求各企业对照评分标准进行整改,若整改后优秀企业数量不变,不合格企业、合格企业、良好企业的数量依次成等差数列,系统所属企业获得贷款的均值(即数学期望)不低于410万元,那么整改后不合格企业占企业总数的百分比的最大值是多少?

查看答案和解析>>

同步练习册答案