精英家教网 > 高中数学 > 题目详情
8.若(x-$\frac{a}{{x}^{2}}$)9展开式中的各项系数之和为-1,则该展开式中的常数项为-672.

分析 通过给二项式中的x赋值1求出展开式的各项系数和,利用二项展开式的通项公式求出二项展开式的通项,令x的指数为0,求出常数项.

解答 解:(x-$\frac{a}{{x}^{2}}$)9展开式中的各项系数之和为-1,
令x=1时,(1-a)9=-1,解得a=2,
则(x-$\frac{2}{{x}^{2}}$)9展开式中的通项公式为C9r(-2)rx9-3r
令9-3r=0,解得r=3,
故该展开式中的常数项为C93(-2)3=-672,
故答案为:-672

点评 本题考查求二项展开式的各项系数和问题常用赋值法、考查二项式系数和公式、考查利用二项展开式的通项公式解决二项展开式的特定项问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.8个不同的球放入三个相同的盒子中,问有多少种不同的放法?(  )
A.1094B.966C.5796D.6561

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.$\frac{sin47°-sin13°}{sin17°}$的值为(  )
A.$\sqrt{3}$B.1C.-$\sqrt{3}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.一个与自然数有关的命题,若n=k(k∈N)时命题成立可以推出n=k+1时命题也成立.现已知n=10时该命题不成立,那么下列结论正确的是:③(填上所有正确命题的序号)
①n=11时,该命题一定不成立;
②n=11时,该命题一定成立;
③n=1时,该命题一定不成立;
④至少存在一个自然数,使n=n0时,该命题成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在(1+x)n的展开式中,若第三项和第七项的系数相等,则n=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某校举行校园达人秀初赛,共有3名评委老师参加评审,某一节目至少有2名评委老师同意通过,则该节目晋级.假如该校高二(1)班共有2名选手参加比赛,其中甲选手获得每位评委老师同意通过的概率均为$\frac{1}{2}$,乙选手获得每位评委老师同意通过的概率均为$\frac{1}{3}$,各评委老师评审的结果相互独立.
(1)分别求甲、乙两名选手晋级的概率;
(2)设高二(1)班甲、乙两选手的晋级的人数为X,试求随机变量X的概率分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知集合A={0,1},B={y|x2+y2=1,x∈A},则A∪B={-1,0,1},∁BA的子集个数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某几何体的三视图如图所示.
(1)画出该几何体的直观图;
(2)求该几何体的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知各项均不为零的数列{an},定义向量$\overrightarrow{c_n}=({{a_n},{a_{n+1}}}),\overrightarrow{b_n}=({2n+2,-2n}),n∈{N^*}$.下列命题中真命题是(  )
A.若?n∈N*总有cn⊥bn成立,则数列{an}是等比数列
B.若?n∈N*总有cn∥bn成立成立,则数列{an}是等比数列
C.若?n∈N*总有cn⊥bn成立,则数列{an}是等差数列
D.若?n∈N*总有cn∥bn成立,则数列{an}是等差数列

查看答案和解析>>

同步练习册答案