精英家教网 > 高中数学 > 题目详情
8.如图,在平面直角坐标系中xOy中,以Ox轴的非负半轴为始边做两个锐角α,β,它们的终边分别与单位圆相交于A、B两点,已知A,B的横坐标分别为$\frac{\sqrt{2}}{10}$,$\frac{2\sqrt{5}}{5}$.
(1)求cos,sinβ;
(2)若tanθ=cotβ,求$\frac{1}{3}$sinθcosθ+sin2θ+2的值.

分析 (1)在单位圆中,由已知点的横坐标求出纵坐标,利用三角函数的定义求得cosα,sinβ的值;
(2)由tanθ=cotβ求出tanθ,再把$\frac{1}{3}$sinθcosθ+sin2θ+2化弦为切得答案.

解答 解:(1)如图,在单位圆中,
∵A,B的横坐标分别为$\frac{\sqrt{2}}{10}$,$\frac{2\sqrt{5}}{5}$,
∴A的纵坐标为$\sqrt{1-(\frac{\sqrt{2}}{10})^{2}}=\frac{7\sqrt{2}}{10}$,B的纵坐标为$\sqrt{1-(\frac{2\sqrt{5}}{5})^{2}}=\frac{\sqrt{5}}{5}$.
∴cos$α=\frac{\sqrt{2}}{10}$,sin$β=\frac{\sqrt{5}}{5}$;
(2)tan$β=\frac{\frac{\sqrt{5}}{5}}{\frac{2\sqrt{5}}{5}}=\frac{1}{2}$,tanθ=cotβ=$\frac{1}{tanβ}=2$,
∴$\frac{1}{3}$sinθcosθ+sin2θ+2=$\frac{1}{3}$sinθcosθ+3sin2θ+2cos2θ
=$\frac{\frac{1}{3}sinθcosθ+3si{n}^{2}θ+2co{s}^{2}θ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{\frac{1}{3}tanθ+3ta{n}^{2}θ+2}{ta{n}^{2}θ+1}$
=$\frac{\frac{1}{3}×2+3×4+2}{4+1}=\frac{\frac{44}{3}}{5}=\frac{44}{15}$.

点评 本题考查任意角的三角函数的定义,考查了三角函数的化简求值,对于(2)的求解,灵活利用sin2θ+cos2θ=1是关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知函数$f(x)=2sin\frac{πx}{4}$,如果存在实数x1,x2,使得对任意的实数x都有f(x1)≤f(x)≤f(x2),则|x1-x2|最小值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设f(x)=4x+1+a•2x+b(a,b∈R),若对于?x∈[0,1],|f(x)|≤$\frac{1}{2}$都成立,则b=$\frac{17}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2sin2xcosxsin(x+$\frac{π}{6}$)-cos2xsinx($\sqrt{3}$sinx+cosx)
(1)求函数f(x)的最小正周期,
(2)求函数f(x)在区间[-$\frac{π}{6}$,$\frac{π}{6}$]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四边形ABCD是正方形,SA=SB=SC=SD,P是棱SC上的点,M,N分别是棱SB,SD上的点,SP:PC=1:2,SN:ND=2:1,SM:MB=2:1
求证:SA∥平面PMN.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数y=a|x|(a>0,且a≠1)的值域为{y|0<y≤1},则函数y=loga|x|的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过抛物线C:y2=8x焦点F的直线与C相交于P,Q两点,若$\overrightarrow{PF}$=4$\overrightarrow{FQ}$,则|QF|=(  )
A.$\frac{7}{2}$B.$\frac{5}{2}$C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知角θ的终边在第三象限,tan2θ=-2$\sqrt{2}$,则sin2θ+sin(3π-θ)cos(2π+θ)-$\sqrt{2}$cos2θ=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.${∫}_{0}^{π}$(sin2x-cosx)dx的值为(  )
A.1B.0C.2D.-2

查看答案和解析>>

同步练习册答案