精英家教网 > 高中数学 > 题目详情

 

    已知函数f(x)对任意的实数x、y都有f(x+y) =f(x)+f(y)-1,且当x>0 时,

f(x)>1.

   (1)求证:函数f(x)在R上是增函数;

   (2)若关于x的不等式的解集为{x|-3<x<2=,求f(2009)的值;

   (3)在(2)的条件下,设,若数列从第k项开始的连续20项之和等于102,求k的值.

 

 

 

 

 

 

 

【答案】

 (1)证明:设x1>x2,则x1-x2>0,从而f(x1-x2)>1,即f(x1-x2)-1>0.………2分

,

故f(x)在R上是增函数.…4分

(2)设2 =f(b),于是不等式为

,即.………6分

∵不等式f(x2 -ax +5a) <2的解集为{x|-3<x<2},

∴方程x2-ax+5a-b=0的两根为-3和2,

于是,解得∴f(1)=2.………8分

在已知等式中令x=n,y=1,得f(n+1)-f(n) =1.

所以{f(n)}是首项为2,公差为1的等差数列.

f(n)=2+(n-1)×1=n+1,故f(2009)=2010.………10分

(3)

设从第k项开始的连续20项之和为Tk,则

当k≥13时,ak=|k-13|=k-13,Tk≥T13=0+1+2+3+…+19=190>102.      (11分)

当k<13时,ak=|k-13|=13-k.

Tk=(13-k)+(12一k)+…+1+0+1+…+(k+6)=k2一7k+112.

令kk+112=102,解得k=2或k=5.………14分

(注:当k≥13时,ak=|k一13|=k一13,令,

无正整数解.得11分)

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ex,直线l的方程为y=kx+b.
(1)求过函数图象上的任一点P(t,f(t))的切线方程;
(2)若直线l是曲线y=f(x)的切线,求证:f(x)≥kx+b对任意x∈R成立;
(3)若f(x)≥kx+b对任意x∈[0,+∞)成立,求实数k、b应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x、y、m满足|x-m|>|y-m|,则称x比y远离m.
(1)若x2-1比1远离0,求x的取值范围;
(2)对任意两个不相等的正数a、b,证明:a3+b3比a2b+ab2远离2ab
ab

(3)已知函数f(x)的定义域D={{x|x≠
2
+
π
4
,k∈Z,x∈R}
.任取x∈D,f(x)等于sinx和cosx中远离0的那个值.写出函数f(x)的解析式,并指出它的基本性质(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x、y、m满足|x-m|<|y-m|,则称x比y接近m.
(1)若x2-1比3接近0,求x的取值范围;
(2)对任意两个不相等的正数a、b,证明:a2b+ab2比a3+b3接近2ab
ab

(3)已知函数f(x)的定义域D{x|x≠kπ,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那个值.写出函数f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ex
ex+1

(Ⅰ)证明函数y=f(x)的图象关于点(0,
1
2
)对称;
(Ⅱ)设y=f-1(x)为y=f(x)的反函数,令g(x)=f-1(
x+1
x+2
),是否存在实数b
,使得任给a∈[
1
4
1
3
],对任意x∈(0,+∞).不等式g(x)>x-ax2
+b恒成立?若存在,求b的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•海淀区一模)已知函数f(x)=
1,x∈Q
0,x∈CRQ
,则f(f(x))=
1
1

下面三个命题中,所有真命题的序号是
①②③
①②③

①函数f(x)是偶函数;
②任取一个不为零的有理数T,f(x+T)=f(x)对x∈R恒成立;
③存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC为等边三角形.

查看答案和解析>>

同步练习册答案