精英家教网 > 高中数学 > 题目详情
3.设△ABC的内角A,B,C所对边的长分别为a,b,c,且b=3,c=1,A=2B,则sinA=$\frac{{2\sqrt{2}}}{3}$.

分析 由题意和正弦定理可得a=6cosB,代入余弦定理可得cosB=$\frac{\sqrt{3}}{3}$,进而可得sinB=$\frac{\sqrt{6}}{3}$,再由正弦定理可得sinA=$\frac{asinB}{b}$代值计算可得.

解答 解:∵△ABC中b=3,c=1,A=2B,
∴由正弦定理可得a=$\frac{bsinA}{sinB}$=$\frac{3sin2B}{cosB}$=6cosB,
由余弦定理可得9=(6cosB)2+1-2×6cosB×1×cosB,
解得cos2B=$\frac{1}{3}$,由B不是三角形最大角,故cosB=$\frac{\sqrt{3}}{3}$,
∴a=2$\sqrt{3}$,sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{\sqrt{6}}{3}$,
再由正弦定理可得sinA=$\frac{asinB}{b}$=$\frac{2\sqrt{3}×\frac{\sqrt{6}}{3}}{3}$=$\frac{{2\sqrt{2}}}{3}$,
故答案为:$\frac{{2\sqrt{2}}}{3}$.

点评 本题考查正余弦定理解三角形,涉及同角三角函数基本关系和整体代入的思想,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.(1)已知a,b,c,d都是正数,求证:(ab+cd)(ac+bd)≥4abcd;
(2)已知x>0,y>0,2x+y=1,求证:$\frac{1}{x}+\frac{1}{y}$≥3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.画出下列各不等式组所表示的平面区域.
(1)$\left\{\begin{array}{l}{3x-y+6>0}\\{2x+3y-1≥0}\\{2x-4<0}\end{array}\right.$
(2)$\left\{\begin{array}{l}{1<x+2y≤4}\\{-2≤2x-y≤-1}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知x∈(0,$\frac{π}{2}$),求函数f(x)=$\frac{1+cos2x+8si{n}^{2}x}{sin2x}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知点A(3,-5),B(-2,2),则线段AB间的距离是$\sqrt{74}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$f(x)=4\sqrt{3}sinxcosx-4{cos^2}x+5,x∈R$
(1)求f(x)取得最大值时x的集合
(2)求f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知圆C1:x2+y2=4和圆C2:x2+y2+4x-4y+4=0关于直线l对称,则直线l的方程为(  )
A.x+y=0B.x+y=2C.x-y=2D.x-y=-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列函数中在定义域内既是奇函数又是增函数的为(  )
A.y=2x+1B.y=x2C.y=$\frac{1}{x}$D.y=x|x|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)满足f(x)=x2+3f′(1)x-f(1),则f(4)=5.

查看答案和解析>>

同步练习册答案