分析 由题意和同角三角函数基本关系可得sinα和cosα,进而由二倍角公式可得sin2α和cos2α,代入两角差的正弦公式计算可得.
解答 解:∵sinα-cosα=$\frac{1}{5}$,sin2α+cos2α=1,
又∵0≤α≤π,∴sinα≥0,
解方程组可得+$\left\{\begin{array}{l}{sinα=\frac{4}{5}}\\{cosα=\frac{3}{5}}\end{array}\right.$,
∴sin2α=2sinαcosα=$\frac{24}{25}$,
cos2α=cos2α-sin2α=-$\frac{7}{25}$,
∴sin(2$α-\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$sin2α-$\frac{\sqrt{2}}{2}$cos2α=$\frac{\sqrt{2}}{2}×\frac{24}{25}-\frac{\sqrt{2}}{2}×(-\frac{7}{25})$=$\frac{31\sqrt{2}}{50}$
故答案为:$\frac{31\sqrt{2}}{50}$
点评 本题考查两角和与差的三角函数公式,涉及同角三角函数的基本关系和二倍角公式,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{{2\sqrt{2}}}{3}$ | D. | $\frac{{\sqrt{2}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -2 | C. | 2 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-1,0} | B. | {1} | C. | {-1,0,1} | D. | ∅ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 吸烟 | 不吸烟 | |
| 男士 | a | c |
| 女士 | b | d |
| A. | ad-bc | B. | ac-bd | C. | |ad-bc| | D. | |ac-bd| |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com