【题目】已知圆N的标准方程为(x-5)2+(y-6)2=a2(a>0).
(1)若点M(6,9)在圆上,求a的值;
(2)已知点P(3,3)和点Q(5,3),线段PQ(不含端点)与圆N有且只有一个公共点,求a的取值范围.
科目:高中数学 来源: 题型:
【题目】某地环保部门跟踪调查一种有害昆虫的数量.根据调查数据,该昆虫的数量
(万只)与时间
(年)(其中
)的关系为
.为有效控制有害昆虫数量、保护生态环境,环保部门通过实时监控比值
(其中
为常数,且
)来进行生态环境分析.
(1)当
时,求比值
取最小值时
的值;
(2)经过调查,环保部门发现:当比值
不超过
时不需要进行环境防护.为确保恰好3年不需要进行保护,求实数
的取值范围.(
为自然对数的底,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学为了普及奥运会知识和提高学生参加体育运动的积极性,举行了一次奥运知识竞赛.随机抽取了30名学生的成绩,绘成如图所示的茎叶图,若规定成绩在75分以上(包括75分)的学生定义为甲组,成绩在75分以下(不包括75分)定义为乙组.
(Ⅰ)在这30名学生中,甲组学生中有男生7人,乙组学生中有女生12人,试问有没有90%的把握认为成绩分在甲组或乙组与性别有关;
(Ⅱ)记甲组学生的成绩分别为x1 , x2 , …,x12 , 执行如图所示的程序框图,求输出的S的值;
(Ⅲ)竞赛中,学生小张、小李同时回答两道题,小张答对每道题的概率均为
,小李答对每道题的概率均为
,两人回答每道题正确与否相互独立.记小张答对题的道数为a,小李答对题的道数为b,X=|a﹣b|,写出X的概率分布列,并求出X的数学期望.![]()
附:K2=
;其中n=a+b+c+d
独立性检验临界表:
P(K2>k0) | 0.100 | 0.050 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体
中,
分别是棱
的中点,
为棱
上一点,且异面直线
与
所成角的余弦值为
.
![]()
(1)证明:
为
的中点;
(2)求平面
与平面
所成锐二面角的余弦值.
【答案】(1)见解析(2)![]()
【解析】试题分析:(1)以
为坐标原点,建立如图所示的空间直角坐标系
,不妨令正方体的棱长为2,设
,利用
,解得
,即可证得;
(2)分别求得平面
与平面
的法向量
,利用
求解即可.
试题解析:
(1)证明:以
为坐标原点,建立如图所示的空间直角坐标系
.
不妨令正方体的棱长为2,
则
,
,
,
,
,
设
,则
,
,
所以
,
所以
,解得
(
舍去),即
为
的中点.
(2)解:由(1)可得
,
,
设
是平面
的法向量,
则
.令
,得
.
易得平面
的一个法向量为
,
所以
.
所以所求锐二面角的余弦值为
.
![]()
点睛:空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.
【题型】解答题
【结束】
22
【题目】已知椭圆
的短轴长为2,且椭圆
过点
.
(1)求椭圆
的方程;
(2)设直线
过定点
,且斜率为
,若椭圆
上存在
两点关于直线
对称,
为坐标原点,求
的取值范围及
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD的侧面PAD是正三角形,底面ABCD为菱形,A点E为AD的中点,若BE=PE. ![]()
(1)求证:PB⊥BC;
(2)若∠PEB=120°,求二面角A﹣PB﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和是Sn , 若点An(n,
)在函数f(x)=﹣x+c的图象上运动,其中c是与x无关的常数,且a1=3(n∈N*).
(1)求数列{an}的通项公式;
(2)记bn=a
,求数列{bn}的前n项和Tn的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com