精英家教网 > 高中数学 > 题目详情
7.已知$\overrightarrow{m}$=(1,1),$\overrightarrow{m}$•$\overrightarrow{n}$=-1,且$\overrightarrow{m}$与$\overrightarrow{n}$的夹角为$\frac{3π}{4}$,
(1)求$\overrightarrow{n}$;
(2)若$\overrightarrow{q}$=(1,0),且$\overrightarrow{n}$与$\overrightarrow{q}$的夹角为$\frac{π}{2}$,$\overrightarrow{p}$=(cosA,1+cosC),其中A、B、C为△ABC的内角,A、B、C依次成等差数列,求|$\overrightarrow{n}$+$\overrightarrow{p}$|的取值范围.

分析 (1)设$\overrightarrow{n}$=(x,y),由于$\overrightarrow{m}$=(1,1),$\overrightarrow{m}$•$\overrightarrow{n}$=-1,且$\overrightarrow{m}$与$\overrightarrow{n}$的夹角为$\frac{3π}{4}$,可得cos$\frac{3π}{4}$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{-1}{\sqrt{2}×\sqrt{{x}^{2}+{y}^{2}}}$,x+y=-1.联立解出即可.
(2)利用向量$\overrightarrow{n}$与向量$\overrightarrow{q}$=(1,0)的夹角为$\frac{π}{2}$,向量$\overrightarrow{p}$=(cosA,1+cosC),结合三角形的内角和,A、B、C依次成等差数列,求出B,C与A的关系,利用二倍角与两角和与差的三角函数化简|$\overrightarrow{n}$+$\overrightarrow{p}$|的表达式,根据角的范围求出表达式的取值范围.

解答 解:(1)设$\overrightarrow{n}$=(x,y),
∵$\overrightarrow{m}$=(1,1),$\overrightarrow{m}$•$\overrightarrow{n}$=-1,且$\overrightarrow{m}$与$\overrightarrow{n}$的夹角为$\frac{3π}{4}$,
∴cos$\frac{3π}{4}$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{-1}{\sqrt{2}×\sqrt{{x}^{2}+{y}^{2}}}$,x+y=-1.
化为$\left\{\begin{array}{l}{x+y=-1}\\{{x}^{2}+{y}^{2}=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-1}\\{y=0}\end{array}\right.$或$\left\{\begin{array}{l}{x=0}\\{y=-1}\end{array}\right.$.
∴$\overrightarrow{n}$=(-1,0)或(0,-1).
(2)∵$\overrightarrow{n}$与$\overrightarrow{q}$的夹角为$\frac{π}{2}$,
∴$\overrightarrow{n}$•$\overrightarrow{q}$=0,
∵若$\overrightarrow{n}$=(-1,0),则$\overrightarrow{n}$•$\overrightarrow{q}$=-1≠0,
∴$\overrightarrow{n}$=(0,-1).
∵2B=A+C,A+B+C=π,可得:B=$\frac{π}{3}$,C=$\frac{2π}{3}$-A,
∴|$\overrightarrow{n}$+$\overrightarrow{p}$|=$\sqrt{co{s}^{2}A+co{s}^{2}C}$=$\sqrt{\frac{1+cos2A}{2}+\frac{1+cos2C}{2}}$=$\sqrt{\frac{cos2A+cos2C}{2}+1}$
=$\sqrt{\frac{cos2A+cos(\frac{4π}{3}-2A)}{2}+1}$
=$\sqrt{\frac{cos2A-\frac{1}{2}cos2A-\frac{\sqrt{3}}{2}sin2A}{2}+1}$
=$\sqrt{\frac{\frac{1}{2}cos2A-\frac{\sqrt{3}}{2}sin2A}{2}+1}$
=$\sqrt{\frac{cos(2A+\frac{π}{3})}{2}+1}$
∵0$<A<\frac{2π}{3}$,可得:0$<2A<\frac{4π}{3}$,即:$\frac{π}{3}<2A+\frac{π}{3}<\frac{5π}{3}$,
∴-1≤cos(2A+$\frac{π}{3}$)$<\frac{1}{2}$,
∴|$\overrightarrow{n}$+$\overrightarrow{p}$|∈$[\frac{{\sqrt{2}}}{2},\frac{{\sqrt{5}}}{2})$.

点评 本题考查了向量数量积运算性质、向量夹角公式,三角函数的化简求值,以及函数值的范围的确定,考查计算能力,转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.如图,用6种不同的颜色把图中A,B,C,D4块区域分开,若相邻区域不能涂同一种颜色,则涂色方法共有480种(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)化简$\frac{{cos(α-\frac{π}{2})}}{{sin(\frac{5π}{2}+α)}}$•sin(α-2π)•cos(2π-α)
(2)求值sin$\frac{25π}{6}$+cos$\frac{25π}{3}$+tan(-$\frac{25π}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.圆与两平行线x+3y-5=0,x+3y-3=0相切,圆心在直线2x+y+1=0,则这个圆的方程为${({x+\frac{7}{5}})^2}+{({y-\frac{9}{5}})^2}=\frac{1}{10}$ (化标准式).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{5}$,$\overrightarrow{b}$=(1,3),且(2$\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{b}$.
(1)求向量$\overrightarrow{a}$的坐标;  
(2)求向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知An4=24Cn6,且(2x-3)n=a0+a1(x-1)+a2(x-1)2+…+an(x-1)n,则n=10,a1+a2+a3+…+an=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在2016年高考来临之际,食堂的伙食进行了全面升级.某日5名同学去食堂就餐,有米饭,花卷,包子和面条四种主食.每种主食均至少有一名同学选择且每人只能选择其中一种.花卷数量不足仅够一人食用,甲同学因肠胃不好不能吃米饭,则不同的食物搭配方案种数为132.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.有一个不透明的袋子,装有三个形状完全相同的小球,球上分别编有数字1,2,3.
(Ⅰ)若逐个不放回的取两次,求第一次取到球的编号为偶数且两个球的编号之和能被3 整除的概率;
(Ⅱ)若有放回的取两次,编号依次为a,b,求直线ax+by+1=0与圆x2+y2=$\frac{1}{9}$有公共点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,设D=BC边的中点,则向量$\overrightarrow{AD}$等于(  )
A.$\overrightarrow{AB}$+$\overrightarrow{AC}$B.$\overrightarrow{AB}$-$\overrightarrow{AC}$C.$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)D.$\frac{1}{2}$($\overrightarrow{AB}$-$\overrightarrow{AC}$)

查看答案和解析>>

同步练习册答案