精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=x+alnx,g(x)=f(x)+$\frac{1}{2}{x^2}$-bx.
(1)讨论函数f(x)的单调性;
(2)若f(x)在x=1处的切线与直线x+2y=0垂直,求a的值;
(3)在(2)的条件下,设x1,x2(x1<x2)是函数g(x)的两个极值点,记t=$\frac{x_1}{x_2}$,若b≥$\frac{13}{3}$,t的取值范围.

分析 (1)求出$f'(x)=1+\frac{a}{x}=\frac{x+a}{x}(x>0)$,由此利用导数性质能求出讨论函数f(x)的单调性.
(2)由f(x)在x=1处的切线与直线x+2y=0垂直,利用导数的几何意义能求出a的值.
(3)由$g(x)=lnx+\frac{1}{2}{x^2}-(b-1)x$,得$g'(x)=\frac{{{x^2}-(b-1)x+1}}{x}$,令g'(x)=0,得x1+x2=b-1,x1x2=1,由此能求出t的取值范围.

解答 解:(1)∵函数f(x)=x+alnx,
∴$f'(x)=1+\frac{a}{x}=\frac{x+a}{x}(x>0)$,…(2分)
当a>0时,由x>0,得f′(x)≥0;
当a<0时,由f′(x)>0,解得x>-a;由f′(x)<0时,解得0<x<-a.
∴若a≥0,则f(x)在(0,+∞)为单调递增函数;…(3分)
若a<0,则f(x)在(0,-a)上单调递减,在(-a,+∞)单调递增,…(5分)
(2)∵f(x)在x=1处的切线与直线x+2y=0垂直,
∴由题意知f'(1)=1+a=2,即a=1…(7分)
(3)∵f(x)=x+alnx,g(x)=f(x)+$\frac{1}{2}{x^2}$-bx,
∴由$g(x)=lnx+\frac{1}{2}{x^2}-(b-1)x$,得$g'(x)=\frac{{{x^2}-(b-1)x+1}}{x}$,
令g'(x)=0,x2-(b-1)x+1=0,即x1+x2=b-1,x1x2=1…(9分)
而$\frac{({x}_{1}+{x}_{2})^{2}}{{x}_{1}{x}_{2}}$=$\frac{{x}_{1}}{{x}_{2}}+2+\frac{{x}_{2}}{{x}_{1}}$=t+2+$\frac{1}{t}$=(b-1)2$≥\frac{100}{9}$,
由x1<x2,即0<t<1,解上不等式可得:0<t$≤\frac{1}{9}$.…(14分)

点评 本题考查函数的单调性的讨论,考查实数值的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意导数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.计算sin245°+cos275°+sin45°cos75°=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设点P(m,n)在圆x2+y2=2上,l是过点P的圆的切线,切线l与函数y=x2+x+k(k∈R)的图象交于A,B两点,点O是坐标原点.
(I)若k=-2,点P恰好是线段AB的中点,求点P的坐标;
(Ⅱ)是否存在实数k,使得以AB为底边的等腰△OAB恰有三个?若存在,求出k的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设点P(-2,0),Q(2,0),直线PM,QM相交于点M,且它们的斜率之积为-$\frac{1}{4}$.
(1)求动点M的轨迹C的方程;
(2)直线l的斜率为1,直线l与椭圆C交于A,B两点,设O为坐标原点,求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若用P表示已知条件、已有的定义、定理、公理等,Q表示所要证明的结论,则如图框图表示的证明方法是(  )
A.合情推理B.综合法C.分析法D.反证法

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.专家由圆x2+y2=a2的面积S=πa2通过类比推理猜想椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的面积S=πab,之后利用演绎推理证明了这个公式是对的!在平面直角坐标系中,点集A={(x,y)|$\frac{{x}^{2}}{4}$+y2≤1},点集B={(x,y)|-3<x<3,-1<y<5},则点集M={(x,y)|x=x1+x2,y=y1+y2,(x1,y1)∈A,(x2,y2)∈B}所表示的区域的面积为36+2π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若{an}是正项递增等比数列,Tn表示其前n项之积,且T9=T19,则当Tn取最小值时,n的值为(  )
A.9B.14C.19D.24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=3sin(2x+$\frac{π}{4}$)的图象向左平移φ(0<φ<$\frac{π}{2}$)个单位后,所得到函数图象关于原点对称,则φ=$\frac{3π}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若双曲线x2+2my2=1的两条渐近线互相垂直,则其一个焦点为(  )
A.(0,1)B.(-1,0)C.(0,$\sqrt{2}$)D.(-$\sqrt{2}$,0)

查看答案和解析>>

同步练习册答案