精英家教网 > 高中数学 > 题目详情
11.设双曲线$\frac{x^2}{4}-\frac{y^2}{2}=1$的左,右焦点分别为F1,F2,过F1的直线l交双曲线左支于A,B两点,则|BF2|+|AF2|的最小值为10.

分析 根据双曲线的标准方程可得:a=2,b=$\sqrt{2}$,再由双曲线的定义可得:|AF2|-|AF1|=2a=4,|BF2|-|BF1|=2a=4,所以得到|AF2|+|BF2|-(|AF1|+|BF1|)=8,再根据A、B两点的位置特征可得|AB|是双曲线的通径时,|AB|最小,计算即可得到答案.

解答 解:根据双曲线$\frac{x^2}{4}-\frac{y^2}{2}=1$,得a=2,b=$\sqrt{2}$,
由双曲线的定义可得:|AF2|-|AF1|=2a=4…①,
|BF2|-|BF1|=2a=4…②,
①+②可得:|AF2|+|BF2|-(|AF1|+|BF1|)=8,
由于过双曲线的左焦点F1的直线交双曲线的左支于A,B两点,
可得|AF1|+|BF1|=|AB|,当|AB|是双曲线的通径时|AB|最小.
即有|AF2|+|BF2|-(|AF1|+|BF1|)=|AF2|+|BF2|-|AB|=8.
即有|BF2|+|AF2|=|AB|+8≥$\frac{2{b}^{2}}{a}$+8=$\frac{2×2}{2}$+8=10.
故答案为:10.

点评 本题考查两条线段和的最小值的求法,是中档题,解题时要注意双曲线的定义和简单性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2sinxcosx+2$\sqrt{3}$cos2x-$\sqrt{3}$.
 (1)求函数f(x)的最小正周期;
(2)若f(x0-$\frac{π}{12}$)=$\frac{6}{5}$,x0∈[$\frac{π}{4}$,$\frac{π}{2}$],求cos2x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.(2x2+3x+1)6的展开式中,x2的系数是(  )
A.72B.147C.132D.75

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.等差数列{an}中,若S20=170,则a7+a8+a10+a17=34.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直三棱柱ABC-A1B1C1中,AB=AC=1,∠BAC=90°,且异面直线A1B与B1C1所成的角等于60°,设AA1=a.
(1)求a的值;
(2)求三棱锥B1-A1BC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设O为坐标原点,F1,F2是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的焦点,若在双曲线上存在点M,满足∠F1MF2=60°,|OM|=2a,则该双曲线的渐近线方程为(  )
A.x±2y=0B.2x±y=0C.x±y=0D.$\sqrt{2}x±y=0$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线方程$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,以O为圆心,实半轴长为半径作圆O,过双曲线的焦点F作圆O的两条切线,切点为A,B,若四边形FAOB为正方形,则双曲线的离心率为(  )
A.$\frac{3}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.四棱锥E-ABCD中,AD∥BC,AD=AE=2BC=2AB=2,AB⊥AD,平面EAD⊥平面ABCD,点F为DE的中点.
(Ⅰ)求证:CF∥平面EAB;
(Ⅱ)若CF⊥AD,求四棱锥E-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在几何体ABCDEF中,FA⊥平面ABCD,EC∥FA,FA=2EC=2$\sqrt{2}$,底面ABCD为平行四边形,AD⊥BD,AD=BD=2,FD⊥BE.
(1)求证:FD⊥平面BDE;
(2)求三棱锥F-BDE的体积.

查看答案和解析>>

同步练习册答案