16£®¾ÝijÊеزúÊý¾ÝÑо¿ÏÔʾ£¬2016Äê¸ÃÊÐн¨×¡Õ¬ÏúÊÛ¾ù¼Û×ßÊÆÈçÏÂͼËùʾ£¬3ÔÂÖÁ7Ô·¿¼ÛÉÏÕǹý¿ì£¬ÎªÒÖÖÆ·¿¼Û¹ý¿ìÉÏÕÇ£¬Õþ¸®´Ó8Ô¿ªÊ¼²ÉÓúê¹Ûµ÷¿Ø´ëÊ©£¬10Ô·ݿªÊ¼·¿¼ÛµÃµ½ºÜºÃµÄÒÖÖÆ£®

£¨1£©µØ²úÊý¾ÝÑо¿Ôº·¢ÏÖ£¬3ÔÂÖÁ7Ôµĸ÷Ô¾ù¼Ûy£¨ÍòÔª/ƽ·½Ã×£©ÓëÔ·ÝxÖ®¼ä¾ßÓнÏÇ¿µÄÏßÐÔÏà¹Ø¹ØÏµ£¬ÊÔ½¨Á¢y¹ØÓÚxµÄ»Ø¹é·½³Ì£»
£¨2£©ÈôÕþ¸®²»µ÷¿Ø£¬ÒÀ´ËÏà¹Ø¹ØÏµÔ¤²âµÛ12Ô·ݸÃÊÐн¨×¡Õ¬ÏúÊÛ¾ù¼Û£®
²Î¿¼Êý¾Ý£º$\sum_{i=1}^{5}$xi=25£¬$\sum_{i=1}^{5}$yi=5.36£¬$\sum_{i=1}^{5}$£¨xi-$\overline{x}$£©£¨yi-$\overline{y}$£©=0.64£»
»Ø¹é·½³Ì$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$x+$\stackrel{¡Ä}{a}$ÖÐбÂʺͽؾàµÄ×îС¶þ³Ë¹À¼Æ¹«Ê½·Ö±ðΪ£º
$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$£¬$\stackrel{¡Ä}{a}$=$\overline{y}$-$\stackrel{¡Ä}{b}$$\overline{x}$£®

·ÖÎö £¨1£©ÓÉÌâÒ⣬¼ÆËã$\overline{x}$¡¢$\overline{y}$£¬Çó³ö»Ø¹éϵÊý$\stackrel{¡Ä}{b}$¡¢$\stackrel{¡Ä}{a}$£¬¼´¿Éд³ö»Ø¹é·½³Ì£»
£¨2£©ÀûÓã¨1£©Öлع鷽³Ì£¬¼ÆËãx=12ʱ$\stackrel{¡Ä}{y}$µÄÖµ¼´¿É£®

½â´ð ½â£º£¨1£©ÓÉÌâÒ⣬µÃ³öÏÂ±í£»

 Ô·Ýx 3 4 5 6 7
 ¾ù¼Ûy 0.95 0.98 1.111.12 1.20 
¼ÆËã$\overline{x}$=$\frac{1}{5}$¡Á$\sum_{i=1}^{5}$xi=5£¬$\overline{y}$=$\frac{1}{5}$¡Á$\sum_{i=1}^{5}$yi=1.072£¬$\sum_{i=1}^{5}$£¨xi-$\overline{x}$£©£¨yi-$\overline{y}$£©=0.64£¬
¡à$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$=$\frac{0.64}{{£¨3-5£©}^{2}{+£¨4-5£©}^{2}{+£¨5-5£©}^{2}{+£¨6-5£©}^{2}{+£¨7-5£©}^{2}}$=0.064£¬
$\stackrel{¡Ä}{a}$=$\overline{y}$-$\stackrel{¡Ä}{b}$$\overline{x}$=1.072-0.064¡Á5=0.752£¬
¡à´Ó3Ôµ½6Ô£¬y¹ØÓÚxµÄ»Ø¹é·½³ÌΪ$\stackrel{¡Ä}{y}$=0.064x+0.752£»
£¨2£©ÀûÓã¨1£©Öлع鷽³Ì£¬¼ÆËãx=12ʱ£¬$\stackrel{¡Ä}{y}$=0.064¡Á12+0.752=1.52£»
¼´¿ÉÔ¤²âµÚ12Ô·ݸÃÊÐн¨×¡Õ¬ÏúÊÛ¾ù¼ÛΪ1.52ÍòÔª/ƽ·½Ã×£®

µãÆÀ ±¾Ì⿼²éÁ˻عéÖ±Ïß·½³ÌµÄÇó·¨ÓëÓ¦ÓÃÎÊÌ⣬ÕýÈ·¼ÆËãÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªtan¦Á=3£¬Ôò2sin2¦Á-sin¦Ácos¦Á+cos2¦ÁµÄÖµµÈÓÚ£¨¡¡¡¡£©
A£®$\frac{8}{9}$B£®$\frac{7}{5}$C£®$\frac{2}{5}$D£®$\frac{8}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}x=\sqrt{5}cos¦È\\ y=3+\sqrt{5}sin¦È\end{array}\right.$£¨ÆäÖЦÈΪ²ÎÊý£©£®
£¨¢ñ£© ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇóÇúÏßCµÄ¼«×ø±ê·½³Ì£»
£¨ II£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}x=tcos¦Á\\ y=tsin¦Á\end{array}\right.$£¨ÆäÖÐtΪ²ÎÊý£©£¬Ö±ÏßlÓëÇúÏßC·Ö±ð½»ÓÚA£¬BÁ½µã£¬ÇÒ$|AB|=2\sqrt{3}$£¬ÇóÖ±ÏßlµÄбÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÒÑÖª2ccosB+b=2a£¬b=6£¬a=4£®
£¨1£©Çó½ÇCµÄ´óС£»
£¨2£©ÈôµãDÔÚAB±ßÉÏ£¬AD=CD£¬ÇóCDµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®µãPÊÇÇúÏßC1£º£¨x-2£©2+y2=4Éϵ͝µã£¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÒÔ¼«µãOΪÖÐÐÄ£¬½«µãPÄæÊ±ÕëÐýת90¡ãµÃµ½µãQ£¬ÉèµãQµÄ¹ì¼£·½³ÌΪÇúÏßC2£®
£¨1£©ÇóÇúÏßC1£¬C2µÄ¼«×ø±ê·½³Ì£»
£¨2£©ÉäÏߦÈ=$\frac{¦Ð}{3}£¨{¦Ñ£¾0}£©$ÓëÇúÏßC1£¬C2·Ö±ð½»ÓÚA£¬BÁ½µã£¬¶¨µãM£¨2£¬0£©£¬Çó¡÷MABµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CËù¶ÔµÄ±ß³¤·Ö±ðΪa£¬b£¬c£®asinBcosC+csinBcosA=$\frac{1}{2}$bÇÒa£¾b£¬Ôò¡ÏB=£¨¡¡¡¡£©
A£®$\frac{5¦Ð}{6}$B£®$\frac{¦Ð}{3}$C£®$\frac{2¦Ð}{3}$D£®$\frac{¦Ð}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªabcd¡Ù0£¬Ôò¡°a£¬b£¬c£¬d³ÉµÈ±ÈÊýÁС±ÊÇ¡°ad=bc¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬ËÄÀâ×¶P-ABCDÖУ¬²àÃæPDCÊÇÕýÈý½ÇÐΣ¬µ×ÃæABCDÊDZ߳¤Îª2$\sqrt{3}$µÄÁâÐΣ¬¡ÏDAB=120¡ã£¬ÇÒ²àÃæPDCÓëµ×Ãæ´¹Ö±£¬MΪPBµÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºPA¡ÍÆ½ÃæCDM
£¨¢ò£©Çó¶þÃæ½ÇD-MC-AµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®¼ÆË㣺A92-C85=6£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸