精英家教网 > 高中数学 > 题目详情
5.如图,四棱锥P-ABCD中,侧面PDC是正三角形,底面ABCD是边长为2$\sqrt{3}$的菱形,∠DAB=120°,且侧面PDC与底面垂直,M为PB的中点.
(Ⅰ)求证:PA⊥平面CDM
(Ⅱ)求二面角D-MC-A的余弦值.

分析 (I)取CD的中点O,连结PO,OA,则可证明PO⊥平面ABCD,OA⊥OC,以O为原点建立空间坐标系,利用向量证明PA⊥DC,PA⊥DM即可;
(II)求出平面ACM的法向量$\overrightarrow{n}$,求出cos<$\overrightarrow{n},\overrightarrow{PA}$>即可得出答案.

解答 解:(I)证明:取CD的中点O,连结PO,OA,
∵△PDC是正三角形,∴PO⊥CD,
又平面PCD⊥平面ABCD,平面PCD∩平面ABCD=O,PO?平面PCD,
∴PO⊥平面ABCD,
∵底面ABCD是边长为2$\sqrt{3}$的菱形,∠DAB=120°,
∴△ACD是等边三角形,∴OA⊥CD,
以O为原点建立空间直角坐标系如图所示:
则A(3,0,0),P(0,0,3),D(0,-$\sqrt{3}$,0),B(3,2$\sqrt{3}$,0),C(0,$\sqrt{3}$,0),
∵M是PC的中点,∴M($\frac{3}{2}$,$\sqrt{3}$,$\frac{3}{2}$),
∴$\overrightarrow{PA}$=(3,0,-3),$\overrightarrow{DC}$=(0,2$\sqrt{3}$,0),$\overrightarrow{DM}$=($\frac{3}{2}$,2$\sqrt{3}$,$\frac{3}{2}$),
∴$\overrightarrow{PA}•\overrightarrow{DC}$=0,$\overrightarrow{PA}•\overrightarrow{DM}$=0,
∴PA⊥DC,PA⊥DM,
又DC∩DM=M,DC?平面DCM,DM?平面DCM,
∴PA⊥平面DCM.
(II)$\overrightarrow{CM}$=($\frac{3}{2}$,0,$\frac{3}{2}$),$\overrightarrow{CA}$=(3,-$\sqrt{3}$,0),
设平面CAM的法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CM}=0}\\{\overrightarrow{n}•\overrightarrow{CA}=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{\frac{3}{2}x+\frac{3}{2}z=0}\\{3x-\sqrt{3}y=0}\end{array}\right.$,令x=1得$\overrightarrow{n}$=(1,$\sqrt{3}$,-1),
又PA⊥平面DCM,∴$\overrightarrow{PA}$=(3,0,-3)是平面DCM的一个法向量,
∴cos<$\overrightarrow{PA},\overrightarrow{n}$>=$\frac{\overrightarrow{PA}•\overrightarrow{n}}{|\overrightarrow{PA}||\overrightarrow{n}|}$=$\frac{6}{\sqrt{5}•3\sqrt{2}}$=$\frac{\sqrt{10}}{5}$.
∴二面角D-MC-A的余弦值为$\frac{\sqrt{10}}{5}$.

点评 本题考查了线面垂直的判定,空间向量在立体几何的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知等比数列{an}的公比是q,首项a1<0,前n项和为Sn,设a1,a4,a3-a1成等差数列,若Sk<5Sk-4,则正整数k的最大值是(  )
A.4B.5C.14D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.据某市地产数据研究显示,2016年该市新建住宅销售均价走势如下图所示,3月至7月房价上涨过快,为抑制房价过快上涨,政府从8月开始采用宏观调控措施,10月份开始房价得到很好的抑制.

(1)地产数据研究院发现,3月至7月的各月均价y(万元/平方米)与月份x之间具有较强的线性相关关系,试建立y关于x的回归方程;
(2)若政府不调控,依此相关关系预测帝12月份该市新建住宅销售均价.
参考数据:$\sum_{i=1}^{5}$xi=25,$\sum_{i=1}^{5}$yi=5.36,$\sum_{i=1}^{5}$(xi-$\overline{x}$)(yi-$\overline{y}$)=0.64;
回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中斜率和截距的最小二乘估计公式分别为:
$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知正数a,b满足a2+ab-3=0,则4a+b的最小值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知△ABC的面积是$\frac{3-\sqrt{3}}{2}$,∠B为钝角,AB=2,BC=$\sqrt{3}$-1,则∠C的度数为450

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河北省高二理上第一次月考数学试卷(解析版) 题型:填空题

把38化为二进位制数为______

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河北省高二理上第一次月考数学试卷(解析版) 题型:选择题

下列说法错误的是( )

A.若直线平面,直线平面,则直线不一定平行于直线

B.若平面不垂直于平面,则内一定不存在直线垂直于平面

C.若平面平面,则内一定不存在直线平行于平面

D.若平面平面,平面平面,则一定垂直于平面

查看答案和解析>>

科目:高中数学 来源:2015-2016学年四川省高二上学期期中考数学试卷(解析版) 题型:选择题

已知恒过定点(1,1)的圆C截直线所得弦长为2,则圆心C的轨迹方程为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ2(1+3sin2θ)=4,曲线C2:$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=2sinθ}\end{array}$(θ为参数).
(Ⅰ)求曲线C1的直角坐标方程和C2的普通方程;
(Ⅱ)极坐标系中两点A(ρ1,θ0),B(ρ2,θ0+$\frac{π}{2}$)都在曲线C1上,求$\frac{1}{ρ_1^2}$+$\frac{1}{ρ_2^2}$的值.

查看答案和解析>>

同步练习册答案