精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0,c为半焦距)的左焦点为F,右顶点为A,抛物线y2=
15
8
(a+c)x于椭圆交于B,C两点,若四边形ABFC是平行四边形,则椭圆的离心率是(  )
A、
1
2
B、2
C、
3
2
D、
3
4
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:由椭圆方程求出F和A的坐标,由对称性设出B、C的坐标,根据平行四边形的性质求出横坐标,代入抛物线方程求出B的纵坐标,将点B的坐标代入椭圆方程,化简整理得到关于椭圆离心率e的方程,即可得到该椭圆的离心率.
解答: 解:由题意得,椭圆
x2
a2
+
y2
b2
=1(a>b>0,c为半焦距)的左焦点为F,右顶点为A,
则A(a,0),F(-c,0),
∵抛物线y2=
15
8
(a+c)x于椭圆交于B,C两点,
∴B、C两点关于x轴对称,可设B(m,n),C(m,-n)
∵四边形ABFC是平行四边形,∴2m=a-c,则m=
1
2
(a-c)

将B(m,n)代入抛物线方程得,n2=
15
8
(a+c)m=
15
16
(a+c)(a-c)=
15
16
(a2-c2),
n2=
15
16
b2
,则不妨设B(
1
2
(a-c)
15
4
b
),再代入椭圆方程得,
1
4
(a-c)
2
a2
+
15b2
16b2
=1,
化简得
1
4
(a-c)
2
a2
=
1
16
,即4e2-8e+3=0,解得e=
1
2
3
2
1(舍去),
故选:A.
点评:本题考查椭圆、抛物线的标准方程,以及它们的简单几何性质,平行四边形的性质,主要考查了椭圆的离心率e,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

把函数y=sin(2x-
π
6
)的图象向左平移
π
6
个单位后,所得函数图象的一条对称轴为(  )
A、x=0
B、x=
π
6
C、x=-
π
12
D、x=
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设O是△ABC内一点,且
OA
=
a
OB
=
b
OC
=
c
,若以线段OA,OB为邻边作平行四边形,第四个顶点为D,再以OC,OD为邻边作平行四边形,其第四个顶点为H,试用
a
b
c
表示
DC
OH
BH

查看答案和解析>>

科目:高中数学 来源: 题型:

为了测量一个塔的高度,某人站在A处测得塔尖C的仰角为30°,前进100m后达到B处,测得塔尖的仰角为75°,则该塔的高度为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,以原点O为极点,以x轴正半烟为极轴,建立极坐标系,设曲线C参数方程为
x=a+
2
cosθ
y=
2
sinθ
(a<0,θ为参数),直线l的极坐标方程为ρcos(θ-
π
4
)=2
2

(1)写出曲线C的普通方程和直线l的直角坐标方程;
(2)若曲线C上的点到直线l的最大距离是5
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
b
的夹角等于
π
3
,如果|
a
|=2,|
b
|=3,那么|2
a
-3
b
|等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1-ax,g(x)=x-
2
x+1
,若?x1∈[1,2],总?x2∈[0,1]使f(x1)=g(x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(tanx)=sinxcosx,则f(
2
3
)的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

己知直线l经过两点P1(x1,y1),P2(x2,y2)(x1≠x2),则直线l的方程为:
y-y1
x-x1
=
y2-y1
x2-x1
,由于这个方程
 
确定的,因此这个方程叫做直线的
 
方程.

查看答案和解析>>

同步练习册答案