分析 构造函数h(x)=ex-$\frac{2}{x}$-1,求导函数再确定h(x)在(-∞,0)和(0,+∞)内的单调性,再由特殊的函数值确定方程f(x)=x+2有且只有两个实数根的区间,故可得t的值.
解答 解:方程即为xex=x+2,由于ex>0,所以x=0不是方程的解,
所以原方程等价于ex-$\frac{2}{x}$-1=0,令h(x)=ex-$\frac{2}{x}$-1,
因为h′(x)=ex+$\frac{2}{{x}^{2}}$>0对于x∈(-∞,0)∪(0,+∞)恒成立,
所以h(x)在(-∞,0)和(0,+∞)内是单调增函数,
又h(1)=e-3<0,h(2)=e2-2>0,h(-3)=<0,h(-2)=e-2>0,
所以方程f(x)=x+2有且只有两个实数根,且分别在区间[1,2]和[-3,-2]上,
所以整数t的所有值为{-3,1}.
故答案为:{-3,1}.
点评 本题考查了导数与函数的单调性关系,以及函数零点的问题,考查了分类讨论思想、转化思想和构造函数方法.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (3,$\frac{2π}{3}$) | B. | (3,$\frac{π}{3}$) | C. | (3,$\frac{4π}{3}$) | D. | (3,$\frac{5π}{6}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 不认真听讲 | 能认真听讲 | 总计 | |
| 15周岁以下 | |||
| 15周岁以上 | |||
| 总计 |
| P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 对任意a,P1是P2的子集,对任意b,Q1不是Q2的子集 | |
| B. | 对任意a,P1是P2的子集,存在b,使得Q1是Q2的子集 | |
| C. | 存在a,P1不是P2的子集,对任意b,Q1不是Q2的子集 | |
| D. | 存在a,P1不是P2的子集,存在b,使得Q1是Q2的子集 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{\sqrt{2}}{4}$ | C. | $\frac{3}{4}$ | D. | $\frac{\sqrt{2}}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com