精英家教网 > 高中数学 > 题目详情

设函数
(1)当时,求函数的最小值;
(2)当时,试判断函数的单调性,并证明。

解:(1)当时,    ….  
当且仅当,即时取等号,∴  . 6分
(2)当时,任取
        ……………. 8分
,∴

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数在(0,1)内是增函数.
(1)求实数的取值范围;
(2)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
已知函数且存在使
(I)证明:是R上的单调增函数;
(II)设其中 
证明:
(III)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的定义域
(2)求函数的值域

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知: 是定义在区间上的奇函数,且.若对于任意的时,都有
(1)解不等式
(2)若对所有恒成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)判断函数y=在区间[2,6]上的单调性,并求最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数
(I)求函数上的最小值;
(II)对一切恒成立,求实数的取值范围;
(III)求证:对一切,都有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为,且同时满足下列条件:
(1)是奇函数;
(2)在定义域上单调递减;
(3)的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)求的定义域.
(2)判断函数的奇偶性.
(3)解不等式

查看答案和解析>>

同步练习册答案