精英家教网 > 高中数学 > 题目详情

已知函数在(0,1)内是增函数.
(1)求实数的取值范围;
(2)若,求证:.

(1)(2)见解析

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知y=是二次函数,且f(0)=8及f(x+1)-f(x)=-2x+1
(1)求的解析式;
(2)求函数的单调递减区间及值域..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)设为实常数).
(1)当时,证明:不是奇函数;
(2)设是奇函数,求的值;
(3)当是奇函数时,证明对任何实数、c都有成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分)
已知函数f (x )=ax 3 + x2 + 2 ( a ≠ 0 ) .
(Ⅰ) 试讨论函数f (x )的单调性;
(Ⅱ) 若a>0,求函数f (x ) 在[1,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数均为实数,且满足,对于任意实数都有,并且当时有成立。
(1)求的值;
(2)证明:
(3)当∈[-2,2]且取最小值时,函数为实数)是单调函数,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数对任意实数恒有且当x>0,

(1)判断的奇偶性;
(2)求在区间[-3,3]上的最大值;
(3)解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知
⑴求的值;      ⑵判断的奇偶性。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)当时,求函数的最小值;
(2)当时,试判断函数的单调性,并证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数y=f(x)= (a,b,c∈R,a>0,b>0)是奇函数,当x>0时,f(x)有最小值2,其中b∈N且f(1)<.试求函数f(x)的解析式

查看答案和解析>>

同步练习册答案