精英家教网 > 高中数学 > 题目详情

已知: 是定义在区间上的奇函数,且.若对于任意的时,都有
(1)解不等式
(2)若对所有恒成立,求实数的取值范围

(1)令则有,即.
时,必有 在区间上是增函数
      解之
所求解集为
(2) 在区间上是增函数,
又对于所有,恒成立
,即时恒成立
,则有
解之得,
的取值范围是 

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知二次函数均为实数,且满足,对于任意实数都有,并且当时有成立。
(1)求的值;
(2)证明:
(3)当∈[-2,2]且取最小值时,函数为实数)是单调函数,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数为定义域上单调函数,且存在区间(其中),使得当时,的取值范围恰为,则称函数上的正函数,区间叫做等域区间.
(1)已知上的正函数,求的等域区间;
(2)试探究是否存在实数,使得函数上的正函数?若存在,请求出实数的取值范围;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 函数是定义在(-1,1)上的奇函数,且
(1)求函数的解析式
(2)利用定义证明在(-1,1)上是增函数
(3)求满足的范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)当时,求函数的最小值;
(2)当时,试判断函数的单调性,并证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是奇函数,并且函数的图像经过点
(1)求实数的值;   
(2)求函数的值域;
(3)证明函数在(0,+上单调递减,并写出的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)利用单调函数的定义证明:函数上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)是定义在[-1,1]上的奇函数,且对任意的实数a,b∈[-1,1],当a+b
≠0时,都有>0.
(1)若a>b,试比较f(a)与f(b)的大小;
(2)解不等式f(x)<f(x-);
(3)如果g(x)=f(x-c)和h(x)=f(x-c2)这两个函数的定义域的交集是空集,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

本题8分)
已知,且.
(1)求解析式
(2)判断函数的单调性,并给予证明

查看答案和解析>>

同步练习册答案