精英家教网 > 高中数学 > 题目详情

设f(x)是定义在[-1,1]上的奇函数,且对任意的实数a,b∈[-1,1],当a+b
≠0时,都有>0.
(1)若a>b,试比较f(a)与f(b)的大小;
(2)解不等式f(x)<f(x-);
(3)如果g(x)=f(x-c)和h(x)=f(x-c2)这两个函数的定义域的交集是空集,求c的取值范围.

解:(1)任取x1,x2∈[-1,1]且设x1<x2,由奇函数的定义和题设不等式,得
f(x2)-f(x1)=f(x2)+f(-x1)=·(x2-x1)>0,
∴f(x)在[-1,1]上是增函数.
∵a,b∈[-1,1]且a>b,∴f(a)>f(b)…………………………………4分
(2)∵f(x)是[-1,1]上的增函数
∴不等式f(x-)<f(x-)等价于不等式组

∴原不等式的解集为{x|-≤x≤}.…………………………………8分
(3)设函数g(x)、h(x)的定义域分别是P和Q,则P={x|-1≤x-c≤1}={x|c-1≤x≤c+1},Q={x|-1≤x-c2≤1}={x|c2-1≤x≤c2+1},
若P∩Q=,那么c+1<c2-1或c2+1<c-1.
解得c的取值范围是(-∞,-1)∪(2,+∞). ………………………………12分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知: 是定义在区间上的奇函数,且.若对于任意的时,都有
(1)解不等式
(2)若对所有恒成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数
(1)求函数的定义域;
(2)求函数的零点;
(3)若函数的最小值为-4,求a的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数
(I)求函数上的最小值;
(II)对一切恒成立,求实数的取值范围;
(III)求证:对一切,都有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的偶函数,且时,
(Ⅰ)求的值;
(Ⅱ)求函数的值域
(Ⅲ)设函数的定义域为集合,若,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)若函数处取得极小值是,求的值;  
(Ⅱ)求函数的单调递增区间;
(Ⅲ)若函数上有且只有一个极值点, 求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)函数f(x)=(a〉0,且a≠1)在区间[1,2]上的最大值比最小值大,求a的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知关于x的二次方程
(1)若方程有两根,其中一根在区间内,另一根在区间内,求m的取值范围
(2)若方程两根均在区间内,求m的取值范围       

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在闭区间上的最大值记为
(1)请写出的表达式并画出的草图;
(2)若, 恒成立,求的取值范围.

 
  
 

查看答案和解析>>

同步练习册答案