精英家教网 > 高中数学 > 题目详情

已知函数是定义在上的偶函数,且时,
(Ⅰ)求的值;
(Ⅱ)求函数的值域
(Ⅲ)设函数的定义域为集合,若,求实数的取值范围。


函数的值域
定义域 实数的取值范围是

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数是奇函数,并且函数的图像经过点
(1)求实数的值;   
(2)求函数的值域;
(3)证明函数在(0,+上单调递减,并写出的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)已知函数,其中.
(1)求的解析式;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数的两个不同的零点为
(Ⅰ)证明:
(Ⅱ)证明:
(Ⅲ)若满足,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)是定义在[-1,1]上的奇函数,且对任意的实数a,b∈[-1,1],当a+b
≠0时,都有>0.
(1)若a>b,试比较f(a)与f(b)的大小;
(2)解不等式f(x)<f(x-);
(3)如果g(x)=f(x-c)和h(x)=f(x-c2)这两个函数的定义域的交集是空集,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为对定义域内的任意,都有,且当
(1)求证:是偶函数;
(2)求证:上是增函数;
(3)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数的定义域为,并满足以下三个条件:(i)对任意,有
(ii)对任意,有;(iii)
(1) 求的值;
(2)求证:上是单调增函数;
(3)若,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数,函数是区间[1,1]上的减函数.
⑴求的最大值;
⑵若上恒成立,求t的取值范围;
⑶讨论关于的方程的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)解不等式
(II)若不等式的解集为空集,求a的取值范围。

查看答案和解析>>

同步练习册答案