精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)是R上的减函数,且y=f(x-2)的图象关于点(2,0)成中心对称.若u,v满足不等式组$\left\{\begin{array}{l}f(u)+f(v-1)≤0\\ f(u-v-1)≥0\end{array}\right.$,则u2+v2的最小值为$\frac{1}{2}$.

分析 根据函数的奇偶性和单调性的性质将不等式组进行化简,利用线性规划的知识进行求解即可.

解答 解:∵y=f(x-2)的图象关于点(2,0)成中心对称.
∴y=f(x)的图象关于点(0,0)成中心对称.
即函数f(x)是奇函数,
则不等式组$\left\{\begin{array}{l}f(u)+f(v-1)≤0\\ f(u-v-1)≥0\end{array}\right.$,等价为$\left\{\begin{array}{l}{f(u)≤-f(v-1)=f(1-v)}\\{u-v-1≤0}\end{array}\right.$,
即$\left\{\begin{array}{l}{u≥1-v}\\{u-v-1≤0}\end{array}\right.$,
作出不等式组对应的平面区域如图,
则u2+v2的几何意义为区域内的点到原点距离的平方,
则由图象知原点到直线u=1-v,即v+u-1=0的距离最小,
此时d=$\frac{|-1|}{\sqrt{2}}=\frac{1}{\sqrt{2}}$,
故u2+v2的最小值为d2=$\frac{1}{2}$,
故答案为:$\frac{1}{2}$

点评 本题主要考查线性规划的应用,利用函数奇偶性和单调性的性质将不等式进行转化,以及点到直线的距离公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知定义在R上的函数y=f(x)对任意x都满足f(x+1)=-f(x),且当0≤x<1时,f(x)=x,则函数g(x)=f(x)-ln|x|的零点个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知实数x,y满足约束条件$\left\{\begin{array}{l}x+y-1≥0\\ x-y-1≤0\\ y-2≤0\end{array}\right.$,则z=2x+y的最小值是(  )
A.-4B.-2C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,内角A,B,C的对边长分别为a,b,c,且(2b-c)cosA=acosC.
(Ⅰ)求角A的大小;
(Ⅱ)若a=3,b=2c,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知集合A={1},B={-1,2m-1},若A?B,则实数m的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=sin(2x-\frac{π}{6})+2{cos^2}x-1(x∈{R})$.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)在△ABC中,三个内角A,B,C的对边分别为a,b,c,已知f(A)=$\frac{1}{2}$,且△ABC外接圆的半径为$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知8个非零实数a1,a2,a3,a4,a5,a6,a7,a8,向量$\overrightarrow{O{A_1}}=({a_1},\;{a_2})$,$\overrightarrow{O{A_2}}=({a_3},\;{a_4})$,$\overrightarrow{O{A_3}}=({a_5},\;{a_6})$,$\overrightarrow{O{A_4}}=({a_7},\;{a_8})$,给出下列命题:
①若a1,a2,…,a8为等差数列,则存在i,j(1≤i,j≤8,i≠j,i,j∈N*),使$\overrightarrow{O{A_1}}$+$\overrightarrow{O{A_2}}$+$\overrightarrow{O{A_3}}$+$\overrightarrow{O{A_4}}$与向量$\overrightarrow{n}$=(ai,aj)共线;
②若a1,a2,…,a8为公差不为0的等差数列,向量$\overrightarrow{n}$=(ai,aj)(1≤i,j≤8,i≠j,i,j∈N*),$\overrightarrow{q}$=(1,1),M={y|y=$\overrightarrow{n}$•$\overrightarrow{q}$},则集合M的元素有12个;
③若a1,a2,…,a8为等比数列,则对任意i,j(1≤i,j≤4,i,j∈N*),都有$\overrightarrow{O{A_i}}$∥$\overrightarrow{O{A_j}}$;
④若a1,a2,…,a8为等比数列,则存在i,j(1≤i,j≤4,i,j∈N*),使$\overrightarrow{O{A_i}}$•$\overrightarrow{O{A_j}}$<0;
⑤若$\overrightarrow{m}$=$\overrightarrow{O{A_i}}$•$\overrightarrow{O{A_j}}$(1≤i,j≤4,i≠j,i,j∈N*),则$\overrightarrow{m}$的值中至少有一个不小于0.
其中所有真命题的序号是①③⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知点F为抛物线C:y2=2px(p>0)的焦点,M(4,t)为抛物线C上的点,且|MF|=5,则抛物线C的方程为(  )
A.y2=xB.y2=2xC.y2=4xD.y2=8x

查看答案和解析>>

同步练习册答案